"N SCIENCES

SORBONNE
UNIVERSITE

GROUPE _wg's.
LA FABRIOLE
DE L'AVENIR

Reverse Engineering

Securite des systemes
embarques

Clement C. Carole F. Léonard Namolaru
23 mars 2025

La structure globale du fichier est basée sur un modele de la galerie des modeles de Google Docs : Fiche de lecture par Reading Rainbow

Sommaire

Sommaire
Analyse matérielle
1. Analyse matérielle du routeur GL.iNet 300M
Analyse, recherche de bugs et exploitation
1. Analyse du PCB et extraction du firmware
2. Configuration de Ghidra
3. Ftude de lauthentification
4. Analyse des commandes TLV
5. Vulnérabilités
6. Interaction avec le Microcontroleur
Bibliographie

Annexe

0O =~ W IN =

15
22
34
48
52
59
60

Analyse materielle

1. Analyse materielle du routeur
GL.iNet 300M

1.1 Analyse materielle avec photos

"Hl wT-300N-V2_PCB_VA2
|

Photos de Ia carte mére du routeur GL.iNet 300M : vue du dessus, de face et arriére

Ces images présentent la carte électronique du routeur sous différents angles. Nous pouvons

identifier :

e Les puces principales (SoC, mémoire Flash et RAM).
e Les interfaces physiques (ports USB, micro-USB, Ethernet).
e Les connecteurs de debug (UART).

e Le blindage métallique, qui protege les composants RF (Radio Fréquence).

[
1.2 Composants identifiés

e SoC (System on Chip) : Medialek MT7628NN - Processeur principal du routeur, integre un
processeur MIPS 24KEc cadencé a 580 MHz, un module Wi-Fi 2.4 GHz, un contréleur
Ethernet et la gestion de l'interface USB.

e Meémoire Flash : Winbond 25Q128JVSQ (128Mb soit 16Mo de NOR Flash) - Contient le
firmware du routeur, basé sur OpenWRT.

e Mémoire RAM : Micron DIRZH (7QMI7) (64 Mo de DDR2) - Stocke les données en cours
d'exécution.

e Composants RF:

o Un module Wi-Fi intégré au SoC permet la transmission sur la bande 2.4 GHz
(802.11n).

o Un blindage métallique recouvre certains circuits pour éviter les interférences
électromagnétiques.

o Une piste d’antenne est présente sur le PCB, assurant I'émission et la réception du

signal Wi-Fi.
1.3 Architecture du routeur

e Processeur et gestion du réseau
o Le SoC MediaTek MT/628NN gere 'ensemble des fonctionnalités du routeur, incluant
le Wi-Fi, ’'Ethernet et I'USB. Il intégre également un switch Ethernet pour la gestion
des ports réseau.
o Stockage et exécution du systeme

o Le firmware OpenWRT est stocké dans la mémoire Flash Winbond de 16 Mo.

4

o Il est chargé en RAM Micron DIRZH 64 Mo DDR2 lors de I'exécution.

o Un port UART (J12) permet un acces direct au terminal du routeur pour du debug ou
du flashage de firmware.

o Connectivité et interfaces

o Wi-Fi 2.4 GHz : Permet de créer un point d’acces ou un répéteur.

o Ports Ethernet WAN/LAN : Assurent la connectivité filaire en 10/100 Mbps.

o Port USB Type-A : Peut étre utilisé pour connecter un stockage externe ou un
modem 4G.

o Port micro-USB : Fournit I'alimentation en 5V/1A.

1.4 Stockage du code

Le GL.iNet 300M Mini Smart Router stocke son firmware OpenWRT dans une mémoire Flash NOR
externe Winbond W25Q128JVSIQ, connectée au SoC Medialek MT/628NN via un bus SPI. Au
démarrage, le SoC exécute le bootloader U-Boot depuis cette mémoire Flash, qui initialise le
matériel et charge le noyau Linux en RAM DDR2 Micron D9RZH pour exécution. Le protocole utilisé

pour la communication entre la Flash et le SoC est SPI NOR Flash Read/Write.

1.5 Extraction et modification du firmware

Le routeur GL.iNet 300M offre plusieurs méthodes pour extraire ou modifier le firmware OpenWRT :

e Via l'interface web OpenWRT (LuCl) : Permet de mettre a jour facilement le firmware
depuis I'interface graphique.
e Par connexion SSH : En accédant au systeme de fichiers et aux partitions MTD via

terminal (cat /dev/mtdX, scp, etc.).

I
e Par la console UART (port J12) : Accessible physiquement sur la carte, ce port permet

d’entrer dans U-Boot pour interrompre le démarrage, lancer une mise a jour via TFTP, ou
reprogrammer [a mémoire.
e Via un programmeur SPI : Si le firmware est corrompu, il est possible de dessouder ou

clipper la puce Flash Winbond W25Q128 et d'en extraire le contenu avec un lecteur SPI

(comme CH341A) et des outils comme flashrom.

Analyse, recherche de

bugs et exploitation

1. Analyse du PCB et extraction du

firmware

1.1 Analyse du PCB

Composants visibles et leurs références

e Microcontroleur principal : STM32F405RGT6, son architecture est basée sur le ceeur
ARM Cortex-M4, avec unité de calcul en virgule flottante (FPU) et instructions DSP,

e Mémoire externe probable : Circuit CMS & gauche du MCU.

e Connecteur USB-A

e Connecteur SWD (5 broches) : VGC, SWCLK, GND, SWI0, NRST.

e Quartz : Oscillateur a boftier métallique.

o Régulateur de tension : Probable AMS1117 (boitier SOT-223).

o Composants passifs : Résistances, condensateurs CMS.

1.2 Localisation des éléments critiques

Stockage du firmware

e le firmware est stocké dans la mémoire Flash interne du microcontrdleur STM32F405RGT6,
qui possede 1 Mo de Flash intégrée.
e Adresse de hase : 0x08000000

Table des interruptions (Vector Table)

I
Au moment du reset, la table des vecteurs d'interruptions est localisée par défaut a I'adresse

0x00000000. Cependant, une fois le systeme démarré, le firmware peut modifier cette adresse
via le registre VTOR (Vector Table Offset Register) pour pointer, par exemple, vers 0x08000000
(début de la Flash interne).

e Adresse par défaut : 0x00000000
e Adresse apres relocation : 0x08000000

Adresse du pointeur de pile au démarrage

Le pointeur de pile initial (MSP) est la premiere entrée de la table des vecteurs. Il est donc lu a

l'adresse :

e 0x00000000 juste apres le reset (avant modification du VTOR)

e Cette valeur est copiée dans le registre SP (Stack Pointer) par le processeur.
Adresse du vecteur de réinitialisation

Le vecteur de réinitialisation est la deuxieme entrée de la table des vecteurs, immédiatement apres

le pointeur de pile. Il est |u a I'adresse :

e 0x00000004
o |l contient I'adresse de la fonction Reset_Handler, qui est exécutée immédiatement aprés un

reset.

1.3 Connexion JTAG et dump du firmware

git clone https://github.com/openocd-org/openocd
openocd -f openocd/tcl/interface/stlink.cfg -f openocd/tcl/target/stm32f4x.cfg

f openocd/tcl/interface/stlink.cfg openocd/tcl/target/stm32f4x.cfg
On-Chip Debugger 4}

using 18
using 180

ent mode: Thread

gdb-multiarch

(gdb) set architecture arm

(gdb) target extended-remote localhost:3333

(gdb) dump memory firmware_dump_after_update.bin 0x08000000 0x08010000
(gdb) quit

does not upport
command.

firmware_dump_after_update.bin
654754617 cf3E 6ath8d8266794 firmware_dump_after_update.bin

1

[
1.4 Dump de la ram

(gdb) dump binary memory dump_ram.bin 0x20000000 0x20020000

(myenv)—(clem®kali)-[~/Documents/reverse/exam/exo2]

$ gdb-multiarch
167 GNU gdb (Debian 16.2-2) 16.2
168 Copyright (C) 2024 Free Software Foundation, Inc.
169 License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
170 This is free software: you are free to change and redistribute it.
171 There is NO WARRANTY, to the extent permitted by law.
172 Type "show copying" and "show warranty" for details.
173 This GDB was configured as "x86_64-linux-gnu".
174 Type "show configuration® for configuration details.
175 For bug reporting instructions, please see:
176 <https://ww.gnu.org/software/gdb/bugs />.
177 Find the GDE manual and other documentation resources online at:
178 <http://www.gnu.org/software/egdb/documentation /.
179
180 For help, type "help".
181 Type "apropos word" to search for commands related to "word”.
182 (gdb) set architecture arm
183 The target architecture is set to "arm".
184 (gdb) target extended-remote localhost:3333
185 Remote debugging using localhost:3333
186 warning: No executable has been specified and target does not support
187 determining executable automatically. Try using the "file" command.
188 0=08002d3e in 77 ()
189 (gdb) dump memory firmware_dump_bcp.bin 0x08000000 0x08010000
190 (gdb) dump memory firmware_dump_bcp.bin 0x02000000 0x04000000
191 (gdb) dump binary memory 0x20000000 0x20020000
192 (gdb) dump memory dump_ram_no_binary.bin 0x20000000 0x20020000
193 (gdb) exit
194 A debugging session is active.

1.5 Analyse du SVD (System View Description)

Identification des périphériques mémoire et registres importants

12

Le fichier SVD utilisé pour cette analyse est le fichier officiel fourni pour le microcontroleur
STM32F405RGT6, dont le lien est référencé dans la bibliographie. Ce fichier, structuré en XML,

décrit 'ensemble des périphériques mémoire mappés du systéme ainsi que leurs registres internes,

voici les plus importants :

e RCC (Reset and Clock Control)

o

o

O

o

O

CR - Contrdle de l'oscillateur principal et PLL

PLLCFGR - Configuration de la PLL

CFGR - Configuration de I'horloge systéme

CIR - Contrdle des interruptions liées a I'horloge

AHB1ENR, APB1ENR, APB2ENR - Activation des horloges pour les périphériques

e GPIOA a GPI0I (Ports d’entrée/sortie)

o

O

(@]

O

(@]

MODER - Configuration des modes des broches (entrée, sortie, alternatif...)
OTYPER - Type de sortie (push-pull/open-drain)

OSPEEDR - Vitesse de la broche

PUPDR - Pull-up/pull-down configuration

IDR - Lecture des entrées

ODR - Ecriture des sorties

BSRR - Mise a 1 ou a 0 d’'une broche

LCKR - Verrouillage de configuration

AFR[0], AFR[1] - Fonctions alternatives

o USART1, USART2, USART3, UART4, UART5 (Communication série)

O

(@]

o

SR - Status (drapeaux de transmission, réception...)
DR - Données a envoyer ou regues

BRR - Baud rate (vitesse de transmission)

13

I
o GR1, CR2, CR3 - Contrdle de la configuration UART

e SPI1, SPI2, SPI3 (Interface SPI)
o CR1, CR2 - Configuration (mode maitre/esclave, vitesse, etc.)
o SR - Statut SPI
o DR - Registre de données
e 12C1,12C2, 12C3 (Interface 12C)
o CR1, CR2 - Contrdle
o SR1, SR2 - Statuts et événements
o DR - Données
o CCR - Contréle de la vitesse
o TRISE - Temps de montée
o USB_OTG_FS / USB_OTG_HS (Interface USB OTG)
o GOTGCTL, GOTGINT - Contrdle général
o GAHBCFG, GUSBCFG - Configuration du bus et de I'interface USB
o GRSTCTL, GINTSTS - Reset, statut des interruptions
o DIEPCTL, DOEPCTL - Contrdle des endpoints (IN/OUT)

14

2. Configuration de Ghidra

2.1 Chargement dans Ghidra

Nous commencons par charger le fichier du firmware dans le logiciel Ghidra en faisant glisser le
fichier dedans. Apres cela, la fenétre suivante saffiche. Nous définissons ensuite

“ARM-Cortex-32-little" comme langage.

File Edit Project Tools Help
Faaaan @

Tool Chest

AWV

Active Project: Gh

& Import /media/sf_Kali_SharedFolder/Rev-Hardware/firmware_dump_after_updz

¥ 5 GhidraEnum

[2 Binary.caq Format: [Raw Binary ._'] @
|:I crackme_| T r Q
[] dump_ra _

5 firmware_|
B firmware

Destination Folder: GhidraEnumStructaforp:/

0O firmware | Program Name: firmware_dump_after_update_before.bin
[firmware_
[5] netiougef} Dptions.
Filter: Please select a language.
Tree View | Tab) Lok | Cancel |
Running Tools
| Workspace v]

Fri Mar 21 21:29:56 CET 2025 Recovery snapshot created: fhome/namolaru/GhidraEnumsStructAforp.repfidata/ol/~00... &

15

Tool Chest

RN =

Select Language and Compiler Specification
Active Project: G

Proc... [, |WVariant | Size | Endian | Compiler
A\~ Gh@raEnu ARM Cortex 32 hig default r::'
[l Binary.ca Cortex little default
5 crackme
2 dump_ra
5 firmware
5 firmware
5 firmware Filter: Cortex - =
netiouge Description L
Filter: ARM Cartex / Thumb little endian
Tree View | Ta (/] Show Only Recommended Language/Compiler Specs
Running Tools
[oK] [cCancel J
|']

Nous double-cliquons maintenant sur le nom du fichier mais choisissons de ne pas I'analyser pour

linstant.

Analyze?

@ firmware_dump_after_update_before bin has not been analyzed. Would you like to analyze it now?

| No (Don't ask again) |

2.2 Chargement du SVD (System View Description)

La premiere étape consiste a charger le fichier SVD correspondant.

16

 nco PR

+F Bookmarks
Bundle Manager
Bytes: firmware_dump_after_update_bef...
Checksum Generator
Comments
5 console
[@h Data Type Manager
Data Type Preview
Gy Decompiler Ctrl+E
! Defined Data
et Defined Strings
Disassembled view
Equates Table
External Programs
Function Call Graph
@) Function Call Trees
<2 Function Graph
Function Tags
Functions
& jython
9 Listing: firmware_dump_after_update_..
B Memory Map
Program Trees
< Register Manager
Relocation Table

» Script Manager

cr+e (OB S H =& | ®

¥ O Scripts 4

InT.. |Sta.. |Name E. | Deseription | Key
» 2 Analysis [o o o
5 ARM [
-l J >
Filter: £ [Fiter: |svol

¢= = {} /home/namolaru/Downloads/ghidra/cmsis-svd-data/data/STMicro

% L O

)

@ ¥ Contents. txt

=3 | fill_contents.py

e "] License.html

@ | STM32F030.5vd

| STM32F031x.svd

Desktop —
5| STM32F042x.svd

——— .
' STM32F072x.5vd
Home "] STM32F091x.svd

5| STM32F301.svd
|| STM32F302. svd
") STM32F303, 5vd
Y| STM32F373.5vd
[5TM32F3x4, svd
| STM32F3x8. svd
Y| STM32F401.svd

STM32F405, svd

G
O

™

[
™=

STM32F730.svd
STM32F745.svd
STM32F750,svd
STM32F765.svd
STM3I2F 7x.svd

STM32F7x2.svd
STM32F7x3.svd
STM3ZF7x5.svd

Ensuite, nous procédons a modifier 'adresse de base comme suit :

[5 sTM32G061.5vd
[5TM32G070.5vd
[sTM32G071.5vd
[sTM32G07x.svd
[* sTM32G081.5vd
[sTM32G0oB0.svd
[sTM32G0BL.5vd
[sTM32G0C1.svd

2

12

@@

12

17

I
D] e

i 4 Bookmarks cri+e DE® EHEH 5 | D
q Bundle Manager
g Bytes: firmware_dump_after_update_bef.., ; L8| II‘\'_ T (=%
Checksum Generator F 4
Comments 5
Bl Console

(65 Data Type Manager
Data Type Preview
Gy Decompiler Ctrl+E
m Defined Data
it Defined Strings

Disassembled View

Equates Table B
External Programs
Function Call Graph y

@) Function Call Trees

+ow Function Graph
Function Tags

Functions

@ jython

[Listing: firmware_dump_after_update_...

Memory Map

2.3 Chargement de la SRAM

Une étape importante consiste a charger le dump de la RAM dans le logiciel. Pour ce faire, nous

avons importer le fichier .bin de la RAM :

Edit Analysis Graph Mawvigation Search Select Tools Window Help

Qpen... ctrivo (B - | @5 (wm-m- | VBES DD
Close ‘firmware_dump_after_update_before.bin' Ctri+w
= - = = - ing: firmware dump after update before.bin
Close Others = = = =
Close All ’
A ram

Save All // ram:08000000- ram: 08
Save 'firmware_dump_after_update_before.bin' As... /7
Save 'firmware_dump_after update before.bin' Ctrl+5 assume spsr = 0xQ@ (Default)

: JB0ORO0D 00 s och
Import File... ! 08000001 00 77 och
Batch Import... 0BRO000Z 02 77 0zh
Open File System. .. ctrl+l (BOOEOO3 20 77 20h
Add To Program... -

Format: [Haw Binary

Language: ARM:LE:32:Cortex:default
Destination Folder: GhidraEnumStructAforp:/

Program Name: firmware_dump_after_update_before.bin

| Options... J

0K] | Cancel J

19

Options

Overlay ||

Block Mame SRAM

Base Address 0x20000000

File Offset 0Ox0
Length Ox20000
Apply Processor Defined Labels [

Anchor Processor Defined Labels [V]

oK] [Cancel J

2.4 Analyse

Apres avoir effectué toutes ces actions, nous avons lancé notre analyse.

CodeBrowser: GhidraEn

Graph MNavigation Search Select Tools Window Help

[EREER Auto Analyze firmware ...er update before.bin’... A JRSEECR=E-NA R ATIESNE SRS) N RONS
Analyze All Open... ; :
Program P » @ firmware_dump_after_update_before. bin
3 - £
Analyze Stack /7 ram

_Analyzers | | Description

[Enab... Anahzer Aggressively attempt to disassemble ARM/Thumb mixed code.
o Aggressive Instruction Finder (Prototype) &

| Optiens

ARM Symbol
ASCH Strings
Call Comnvention ID

No options avallable,

Call-Fikup Installer
Cendense Filler Bytes (Prototype)
Create Address Tables

Data Reference

Decompiler Parameter ID
Decompiler Switch Analysis
Demangler GMU

Disassemble Entry Points
Embedded Media

External Entry References
Function Start Pre Search

IERERERREOEROEER®

L

Eunctinn £t ord Sonrch s

| Select All | | Deselect All | | Reset || Save.. |

[Current Program Options !'_] Delate

|Delel:es the currently selected user conﬂguratlon|

21

3. Etude de I'authentification

3.1 Introduction

|l existe deux principales méthodes pour effectuer une analyse : la méthode « Haut en bas », qui
consiste a démarrer l'analyse a partir du point d'entrée, et la méthode « Bas en haut », ol nous
partons des éléments qui attirent notre attention, tels que des chaines de caracteres ou des
importations. Ainsi, nous commencons par rechercher la fonction qui utilise la chaine de caracteres

Enter_password: afin de mieux comprendre le fonctionnement du mécanisme d’authentification.

o B
f + Bookmarks cr+e |OB® E R - | &
b Bundle Manager = -
B - X
1 Bytes: firmware_dump_after_update.bin & D II}_ £ @
Checksum Generator . #0x270] 1
ecksum Generator Boo1098
Comments
gccnsme o sk ok Rk ok o kR
53 Data Type Manager FUNCTION g
DataT}‘pePreVieW Ao o o o o o o oo o o o ok o ook o ook ok o ok
G4 Decompile: FUN_0B0010ba Ctri+E EL;:_}oaaamaaunt param_1, uint para...
i Defined Data m_1
B Defined Strings m 2

08004ee8 Enter password: "Enter password: "
s_Enter_password:_08004ee8 XREF[2]: FUN_08000aa8: 08000ad0(*),
02000b30 (*)
08004eed 45 Ge 74 ds "Enter password: "
65 72 20
70 61 73 ...

De cette fagon, nous trouvons la fonction FUN_08000aa8 et nous commencons a I'analyser.

22

Decompile: FUN_08000aa8 - (firmware_dump_after update_befare.bin % . RO | g} | [| ﬁ| v X

void FUN_08000aas(void)

{
byte bvarl;
int 1VarZ;
undefined auStack 68 [32];
undefined auStack_48 [64];

W=l =wMN -

10| while(true) {
11 if (4 < *DAT_0s000h28) {

12 FUM_0BE0066c (FTR_s_Too_many_failed_attempts._Access_0B8000b40);
1Lz | return;
14 }

15 FUM_0800066c (PTR_s_Enter_password:_08000b30);

18 FUN_08000a20 (auStack 48, 0xd0);

17 FUN_0B0007c4 (austack_68);

18 1Var2 = FUN_0B00E830 (auStack_48,auStack_68);

19 if (iVar2 == 0) break;

20 bvarl = *DAT_08000b28;

21 if ({1 < bVarl) && (iVar2 = FUN_080001d0(auStack_48,PTR_s_DEBUGL23 08000b34), iVar2 == 0)) {
22 *DAT_08000b20 = 1;

23 *DAT_0DBO0Ch38 = 1;

24 FUN_B800065c (FTR_s_[DEBUG_MODE_ENABLED] _Access_gran_08000b3c);
25 return;
26 }

27 *DAT_08000b28 = bvarl + 1;
28 FUN_0800066c (DAT_0B000b2c) ;
29| 1}

30| *DAT_08000b20 = 1;

31| FUN_0800066c (DAT_0B000b24):
32| return;

w
w
-

A partir de cette section, nous concluons que la fonction FUN_0800066¢ est une fonction
daffichage. En programmation des systemes embarqueés, il est courant d'éviter d'utiliser printf, nous
avons donc appeler cette fonction simplement print. Nous concluons également que
DAT_08000b28 est un pointeur vers une zone mémoire qui stocke le nombre de tentatives de

connexion incorrectes effectuées jusqua présent.
if (4 < *DAT 08000b28) {
FUN_0800086c (FTR s Too many_ failed attempts. Access 08000b40);
return;

]
FUN_0800056c (FTR s Enter password: 08000b30);

Etant donné que la variable bVar1 stocke la valeur vers laguelle DAT_08000b28 pointe, nous

décidons d’appeler cette variable attempts_cpt.

bVarl = *DAT 0S000b28;

23

I
Les fonctions FUN_080001d0 et FUN_08000830 semblent étre des fonctions de comparaison

de chaines de caractéres, renvoyant zéro si les deux chaines sont identiques. Alors que la fonction
FUN_080001d0 ressemble a une fonction strcmp classique, la deuxieme fonction ressemble a
une fonction de comparaison plus personnalisée qui differe des implémentations classiques. Dans
les deux cas, la chaine comparée est celle stockée dans auStack 48, ce qui permet de conclure

que ce tampon contient I'entrée de l'utilisateur.

Le tampon auStack_48 est rempli a l'aide de la fonction FUN_080007c4 qui charge un contenu
depuis la SRAM dans ce tampon (I'analyse de cette fonction fait 'objet de la section suivante.). Il
sagit du mot de passe que lutilisateur doit saisir, et il est donc clair que la fonction

FUN_08000830 compare le mot de passe saisi par l'utilisateur avec le vrai mot de passe.

Etant donné ces éléments, nous obtenons le code suivant.

vold FUM 08000aas8(void)

1
int cmpt_result;
undefined real_password_buffer [32];
undefined user buffer [54];
byte attempts_cpt:

while{ true 3 {
if (4 < *attempts_cpt_ptr) {
print (FTR_s_Too_many_Tfailed_attempts._ Access_08000b40);
return;
¥
print{(PTR_s_Enter_password:_ 08000b30):
FUM_G2000a20(user_buffer, Oxdd);
FUN_G8e007cd (real_password _buffer);
cmpt_result = FUN_Q8000830(user_buffer, real_password_buffer);
if (cmpt_result == Q) break;
attempts_cpt = *attempts_cpt_ptr:
if ({1 < attempts_cpt) &&
{cmpt_result stremp (user_buffer, PTR_s_DEBUG123 08000b34), cmpt_result == 0)) {
#DAT_08000b20 1:
*DAT_0B000b38 1:
print (PTR_s_[DEBUG MODE _EMABLED] Access_gran_02000b3c);
return;
¥
*attempts_cpt_ptr = attempts_cpt + 1:
print (DAT_0S000b2c);
¥
#DAT_08000b20 = 1;
print (DAT_oBo00b24) :
return;

24

3.2 Stockage du mot de passe

Comme déja indiqué dans la section précédente, le rdle de la fonction FUN_080007c4 est de
charger le vrai mot de passe dans un tampon. Nous découvrons ainsi que ce mot de passe est hasé
sur une liste de caracteres stockés dans la SRAM. Afin d'obtenir le mot de passe, une opération XOR
est effectuée entre la valeur hexadécimale de chacun de ces caracteres et la valeur 0x5a. De cette
maniéere, le mot de passe est reconstitué et utilisé pour la comparaison avec celui saisi par
[utilisateur. De plus, nous pouvons voir que, sous certaines conditions, ce mot de passe est affiché a
[utilisateur.

vold FUN_0BO007c4(int buffer_ptr)

{

uint 1i;

for (1 =0; 1 <7; 1 =1+1){
*(byte *)(buffer_ptr + 1) = *(byte *)(DAT_0S000S00 + 1) = Ox5a;
b
*(undefined *) (buffer_ptr + 7) = 0;
if (*DAT 08000804 == "\x0l') {
print ([DEBUG] Decrypted password):
print (buffer_ptrl;
print{Entering TLV command mode};
b

return;

DAT_(2000800 KREFI1]: FUN_020007c4: 080007cc (R)
02000200 14 00 00 20 undefinedd4 200000140

5_67.7734_20000014 KREF[1] : FUN_0B000Tc4: 080007ce (R)
20000014 36 3f 2e ds "67,7734"
37 3f 33
34 00

buffer = [0x36, 0x3f, 0x2e, 0x37, 0x3f, 0x33, 0x34]
password ="

25

.
foriin range(0, 7):
password += chr(buffer[i] # 0x5a)

print(password)

[/mediafsf_Kali_SharedFolder/Rev-Hardware

main.py

Mais que représente DAT_08000804 ?

DAT_08000804 XREF[1]: FUN_0BO00Tc4: 0800070 (R)
08000804 95 01 00 20 undefined4 200001895h

|l s'agit d'un pointeur vers une zone mémoire située dans la SRAM, référencée par plusieurs autres

fonctions.

DAT_EBBBGlQSl XREF[8] FUN_0B000680: 08000686 (R),
FUN_08000734: 0800073a (R),
FUN_BBE0078c : 08000790 (R) .
FUN_0B80007c4: 0800072 (R),
FUN_0B000aaS: 03000b0a (*),
FUN_08000aa8: 08000b0C (W)
20000195 00 undefinedl ©O0h

Par exemple, dans la fonction FUN_08000680, le pointeur vers cette zone de mémoire s'appelle
DAT 08000710, et dans le cas ol la valeur stockée sur la SRAM est nulle, un message s'affiche a

[utilisateur (avec la fonction d'affichage FUN_0800066c)
if (*DAT 08000710 == '\0') {

FUN_0BO006EC (DAT_08000720) ;
¥

Nous commencons par regarder quel message est affiché a l'utilisateur.

26

DAT_08000720 KREF[1]: FUN_0B000680: 08000620 (R
08000720 94 4c 00 OB undefined4 BSBGﬂCQﬂh

s_[-]_Debug_mode_required. 08004c94 XREF[0,3]: FUN_DSD00GE0: 08000620 (*
FUN_DE000734: 08000774 (*
FUN_DB800078c : 080007ac (*
08004cSl 48 70 47 ds "FpG[-] Debug mode required.wrin”
Sh 2d sd
20 44 &5 ..

Et nous en concluons que le but de la condition est de vérifier si le mode DEBUG est déja active.

Nous obtenons alors :

if (*debugModeEnabled == '\0') {
print(DebugModeRequired);
}

Et pour la fonction FUN_080007c4, nous concluons que si le mode DEBUG est activé, le vrai

mot de passe est affiché a l'utilisateur aprés avoir été chargé dans la mémoire tampon.

if (*DebugModEnabled == '\x01') {
print ([DEBUG] Decrypted_password);
print (buffer_ptr);
print(Entering_TLV_command_mode);
}

3.3 Activation du mode debug

L'examen de la fonction FUN_08000aa8 nous apprend également comment activer le mode
DEBUG : pour cela, l'utilisateur doit effectuer au moins une tentative de connexion incorrecte, puis
saisir DEBUG123 comme mot de passe. Reste maintenant a comprendre la signification de
DAT_08000b20 et DAT_08000b38.

21

[
if ((1 < attempts cpt) &&
{cmp_result = stremp(user_buffer,PTR_s_DEBUGL23 08000b34), cmp_result == 0)) {

¥DAT 08000b20 = 1;
*¥DAT 08000b38 = 1;
print{PTR s [DEBUG MODE ENABLED] Access gran_08000b3c);
return;
b

Pour DAT_08000b20,

DAT_0B000b20 XREF([2] : FUN_DB000aa8: 08000aae (R),
FUN_08000aaB: 0800006 (R)
08000b20 94 01 00 20 undefined4 29939194[1

DAT_20000194 XREF[9]: FUN_GBO0085c : D8000892(*),
FUN_0B800085c : 08000895 (W),
FUN_G800085¢c : D80008e 4 (*),
FUN_0B00085¢ : 080008eB8 (W),
FUN_G8000a78: D8000as8c (R) .
FUN_0B000aa8: 08000aze (*),
FUN_G8000aa8: 08000ab2 (W),
FUN_G8000aa8: DB000bOS (W),
FUN_G8006h44 ; 0B000bE0 (R)

20000194 0O undefinedl ©Bh

Nous en concluons que DAT_08000b70 de la fonction FUN_08000b44 pointe également vers
la méme zone mémoire. Si la valeur stockée dans cette zone mémoire est égale a zéro, la fonction
FUN_08000aa8 est appelée, sinon la fonction FUN_08000a78 est appelée.
if (*DAT 08000b70 == '\0') {
FUN_08000aa8();

T
else {

FUN_08000a78();
I

FUN_08000aa8 est la fonction par laquelle nous avons démarré l'analyse et elle gére tout ce qui

concerne l'authentification. La fonction FUN_08000a78 soccupe de la gestion du mode TLV :

28

E Listing: firmware_dump_after updss LE JQ E)‘ -] - El i v X

0D 45 JE B ds “Exiting TLV mode, .

74 60 Ge

67 20 54 ...
08004ecE 00 Fe 0ah
Ga00decT 00 7 0ch

5_Entering_TLV_command_sode. .. _0B00decE

| 0800decB 45
65
G&

74 ds "Entering TLV command mode. 13

& 14
20 []

I8

Le but de la condition ci-dessous est donc de vérifier si le mode TLV est activé

if (*TlvModeEnabled == '\0') {
FUN_08000aa8 () ;

H

else {
FUN_08000a78 () ;

H

Pour DAT_08000b38,

DAT_08000b38 XREF[1]: FUN_08000aa8: 08000h0a (R)
08600b38 95 01 00 20 undefinedd4 200001595h

DAT_20000185 KREF[6] : FUN_0B000680: 08000686 (R),
FUN_08000734: 0800073a (R),
FUN_0800078c: 08000790 (R),
FUN_080007c4: 0800072 (R),
FUN_08000aa8: 08000b0a (*),
FUN_08000aa8: 08000boc (W)

20000195 00 undefinedl 00h
Nous avons déja identifié qu'il s'agit de la zone mémoire qui indique si le mode DEBUG est activeé.

Sur la base de ces données, nous pouvons désormais mieux comprendre le code.

29

|
void FUN _08000aa8(void)

{
int cmpt_result;
undefined real password buffer [32];
undefined user buffer [64];
byte attempts_cpt;

while({ true) {
if (4 < *attempts_cpt_ptr) {
print(FTR s Too _many_failed attempts. Access 08000b40);
return;
}
print(FTR s Enter password: 08000b30);
FUN_G8000a20(user buffer, 0x40);
FUN_080007c4(real_password_buffer);
cmpt_result = FUN_08000830(user_buffer,real_password_buffer);
if (cmpt_result == 0) break;
attempts_cpt = *attempts_cpt_ptr;
if ({1 = attempts cpt) &&
(cmpt_result = stremp(user buffer,PTR s DEBUG123 08000b34), cmpt_result == 0)) {
#T1lvModeEnabled = 1;
*debugModeEnabled = 1;
print (FTR s_[DEBUG_MODE ENABLED] Access gran_G8000b3c);
return;
}
*¥attempts_cpt_ptr = attempts_cpt + 1;
print (DAT _08000b2c);
}
#T1lvModeEnabled = 1;
print (DAT _08000b24);
return;

3.4 Fonction de validation du mot de passe

La fonction de comparaison vérifie, caractére par caractere, si le mot de passe saisi par ['utilisateur
correspond au mot de passe réel. La vérification sarréte des qu'un caractere non identique est
détecté ou lorsque la fin de I'une des chaines est atteinte. Aprés chaque correspondance de
caracteres, un appel a la fonction FUN_08002d44 est effectué.

30

int FUN_08000830(1int buffer_addr_1,int buffer_addr_2)

{
uint current char;
int 1i;

for (1 = 0; (current_char = (uint)*({byte *)(buffer_addr_1 + 1), current_char != 0 &&
(*(byte *)(buffer_addr_2 + 1) !=0)); 1 =1 + 1) {
1f (current_char != *#(byte *) (buffer_addr 2 + 1)) {

return 1;

}

FUN_08002d44 (0x32) ;
1
1 = current_char - *{byte *){buffer_addr_2 + 1);
if (i1=0) 4

1=1;
|
return 1;

1

La fonction FUN_08002d44 semble effectuer des itérations de boucles infinies :

vold FUN 08002d44(uint param_1)

{
int ivarl:
int 1vVarz;

1Varl = FUN_0BO02d38();
if (param_1 != Gxffffffff) {
param_1 = param_1 + *DAT 0B002dE8;
+
do {
1Varz = FUN_08002d38();
T while ({uint)(iVar2 - iVarl) < param_1);
return;

Nous pourrions par exemple effectuer les mémes opérations en utilisant le code Python suivant, car

la fonction FUN_08002d38 renvoie la valeur stockée dans la zone mémoire suivante :

31

[
K Listing: firmware_dump_after upd g IEJQ_ E =% _N_B!BBZdEE - (firmware_dump_after_
4 s Uoh & 1
20000411 60 e 0ch 2 undefined4 FUN_08002d38(void)
20000412 00 ?? 08h Bl -
20000413 o0 77 oeh = 4l
5| return *DAT_08002d40;
pat_z0000414 8} -
7
— 20000414 a3 8f 00 00 undefinedd4 OOOOBFAZh

De plus, DAT 08002d68 pointe vers cette zone de mémoire

DAT_2000001c KREF[3]: FUN_08002ca0: 08002ca6(R),
08002d34(*),
FUN_08002d44 : 08002d56 (R)
2000001c 01 undefinedl 0©1h
2000001d 00 ?? ooh
2000001e 0O ?? ooh
2000001 00 ?? ooh

def FUN_08002d38():

return 0xa38f0000

def FUN_08002d44(param_1):
iVarl = FUN_08002d38()
if (param_1 != Oxffffffff):

param_1 + param_1 + 0x01000000

iVar2 = FUN_08002d38()
while (iVar2 - iVarl) < param_1:
print((iVar2 - iVarl), param_1)

iVar2 = FUN_08002d38()

FUN_08002d44(0x32)

32

I
Cependant, il s'agit de zones de mémoire accessibles par d’autres fonctions. Une estimation

raisonnable est donc que les valeurs dans ces zones de mémoire changent en méme temps, de sorte
que le nombre ditérations de boucle sera fini. Cela implique qu'il y a un certain délai aprés la

vérification de chaque caractére du mot de passe, rendant cette fonction vulnérable aux attaques
temporelles (7iming attack).

33

4. Analyse des commandes TLV

4.1 Le schéma de codage TLV dans le code C

TLV (type-length-value ou tag-length-value) est un schéma de codage utilisé pour les
éléments d'information dans les protocoles de communication. Un flux de données codé en TLV
contient du code relatif au type d'enregistrement, a la longueur de la valeur de I'enregistrement et
enfin 3 la valeur elle-méme.' Nous avons vu précédemment que la fonction FUN_08000a78 est

responsable de la gestion du mode TLV.

void FUN 02000a78(void)

{
undefined austack 48 [72];

FUN_G800066c (Entering _TLV command_mode);

FUN_G8000a20(ausStack 48, 0x40) ;

while (*DAT 08000aad !'= '\0') {
FUN_DB0008Sc (auStack 48, Gx40);

b

return;

DAT_08000aa4 pointe vers la méme zone en mémoire que le pointeur dans la condition de la
fonction FUN_08000b44 :

if (*TLlwModeEnabled == '»0'}) {
FUM 02000C0aas () ;

i

else
FUM_ O2000a720();

i

" https://en.wikipedia.org/wiki/Type%E2%80%93length%E2%80%93value

34

I
Nous en concluons qu'il sagit de la méme condition et que auStack_48 est le tampon pour le TLV

que l'utilisateur va saisir.

void FUN_08000a78(void)

{
undefined tlv_huffer [72];

print(Entering_TLV command_mode);
FUN_G8000a20 (t1v_buffer, 0xd0);
while (*DAT_08000aad != 'w0') {

FUM_0800085c (t1v_buffer, 0x40);
}

return;

Alors qu'il semble que le role de la fonction FUN_08000a20 soit de recevoir les entrées de
[utilisateur, le role de la fonction FUN_0800085c est de les interpréter. Pour comprendre la

signification du code, nous commencons par trouver les chaines de caracteres correspondantes.

if (param_z2 = =) {
FUM_08200055c (Invalid TLW commandDl;
¥
else {
bwWarl Fparam_1;
uvarz = * {(undefinedz2 *) (param_1 + 11J:
FUMN_ 028004554 (austack SO, [DEBUG] TLWV Received - Type: OxS,bVvarl,uwvarz2):;
FUM_ CS0006sc (austaclk SOl
if (bvarl == oOxaal) L
FUMN_OS000E30 () ;

¥
else 4
if (bvarl <= Gxabld {
if (bwvarl == =) {
FURN_OS004Za4 (+FDAT_ OS00095SD ;
Fur_ os000s5sc ([+]1_Memory__freedd;
returmn;

i
if (bwvarl = 4a4) {
if (bwvarl == 12 {
*DAT_ QO20009549 = uWvwarz;
iwvard = FUh 080004294 (uvarz) ;
FDAT OS000958 = divard:
if fivara = ad {
Furn 0800088c ([+]_Memory_allocated):
return:
¥
Fun_os000ss5c ([-1_Allocation_failed):
return:;
i
it (bBwvarl == 2) {
if (*DAT_OS000952 !'= 0O0) {
FUM 02004Z2b 4 (*DAT OS000952, param_1 + 2, uvarz):
Fur 02000s8sSc ([+]1_ _Heap_ owverftlow triggered):
return;
¥
Fur_ ogo00ssc ([-]1_Mo_allocated_memory):
return:
T
1

35

I
param_1 est le tampon, param_2 est sa longueur et nous comprenons que bVar1 est la partie

Type du TLV tandis que uVar2 est la partie Length. FUN_0800066c est, comme nous l'avons
vu précédemment, la fonction d’affichage.

vold FUN_0800085c (byte *tlv_buffer,uint tlv_buffer_len)

{
undefined4 uVarl;
int iVarz;
undefined auStack 70 [32];
undefined auStack 50 [B4];
undefined2 tlv_length;
byte tlv_type;

if (tlv_buffer len < 3) {
print(Invalid_TLV_command);
1
else {
tlv_type = *tlv_buffer;
tlv_length = *{undefined2 *) (tlv_buffer + 1);
FUM_08004554 (auStack_50, [DEBUG] _TLV Recelved_ - Type:_Ox%,tlv_type,tlv_length);
print(austack 50);

Cela nous permet de conclure que la partie Type du TLV est codée sur un octet, et

quimmédiatement apres se trouve la partie Length. Nous identifions également les valeurs

suivantes pour les types de commandes possibles : 3, 1, 2, 0x42, Oxcc, 0xff, et 0xbb.

4.2 Gestion des allocations mémoire

m Type 3: Libération de I'allocation mémoire pointée par *DAT_08000958.

if (tlv_type == 3} {
FUN_ 080043ad (*DAT 0B000958) ;
print ([+]_Memory_freed);
return;

}

36

I
La fonction FUN_080043a4 est donc trés probablement la fonction free.

if (tlv_type == 3) {
free(*ptr_to malloc_result);
print([+] Memory freed);
return;

Iy

m Type 1:Demande d'allocation mémoire de taille tlv_length.

if {tlv_type == 11 {

*¥DAT 08000984 = tlv_length;

1Var2 = FUN 0B004394(t1lv length);

¥ptr to malloc _result = 1Varz;

it (ivar2 !'=0) {
print([+] Memory allocated]);
return;

T

print([-]_Allocation failed);

return;

La fonction FUN_08004394 est donc trés probablement la fonction malloc.

if (tlv_type == 1) {
*ntr_to malloc_length = tlv_length;
malloc_result = malloc(tlv_Tength);
*ntr to malloc_result = malloc _result;
if (malloc_result !'=0) {
print ([+] Memory allocated);
return;
+
print([-] Allocation failed):
return;

37

I
m Type 2 : Daprés la condition qui apparait, nous comprenons que pour utiliser cette

commande, une zone mémoire doit d'abord étre allouée a l'aide de la commande 1.

if (tlv_type == 2} {

if (*ptr_to_malloc_result != 0) {
FUN_0280043b4 (*ptr_to_malloc_result,tlv_buffer + 2, tlv_length);
print([+]_Heap_overflow_triggered);
return;

by

print([-] No_allocated memory);

return;

¥

Mais, pour mieux comprendre cette partie, il faut dabord sintéresser a la fonction
FUN_080043b4.

joid FUN_0B0043b4(int param_1,undefined *param_2,int param_3)

{
undefined #*puVarl;
undefined *puvarz;
undefined *puVars;

puVarZ = param_2 + param_3;
puvar3 = {undefined #)(param_1 + -1):
if (param_2 != puVar2) {

do {
puVarl = param_2 + 1;
puvars = puVar3 + 1;

¥puVars = ¥param_2;
param_2 = puVarl;
} while (puvarl != puvarz);
return:
}
return;

En donnant de nouveaux noms aux parametres, tout devient plus clair :

38

|
vold FUN_080043b4(int malloc_result_addr,undefined *buffer,int buffer_len)

{
undefined *puVarl;
undefined *puvarz;
undefined *puVars;

puVarz = buffer + buffer_len;
puvar3 = (undefined *)(malloc_result_addr + -1);
if (buffer != puvarz) {
do {
puvarl = buffer + 1;
puVar3 = puVar3 + 1;
*¥pular3 = *huffer;
buffer = puvarl;
Y while (puvarl != puvarz);
return;
}
return;

Nous en concluons que puVar2 est un pointeur vers la fin du tampon, puVar3 pointe vers
I'emplacement suivant dans le tampon alloué a l'aide de malloc, et que puVar1 pointe vers le

caractere suivant dans le tampon buffer. Ce qui nous donne :

void FUN_080043b4(int malloc_result_addr,undefined *buffer,int buffef_len)

{
undefined *next char_in buffer;
undefined #*ptr buffer end;
undefined *malloc_buffer ptr;

ptr buffer end = buffer + buffer_len;
malloc_buffer ptr = (undefined #*)(malloc_result_addr + -1);
if (buffer != ptr_buffer_end) {
do {
next char_in buffer = buffer + 1;
malloc_buffer ptr = malloc_buffer ptr + 1;
¥malloc buffer ptr = *huffer;
buffer = next char_in_buffer;
} while (next char_in buffer != ptr_buffer _end);
return;
1

return;

39

I
Nous comprenons de cela que le but de la fonction FUN_080043b4 est de copier la partie Value

de la commande TLV dans un tampon alloué par malloc, et puisque la copie commence a partir de
tlv_buffer + 3, nous comprenons que la partie Length de la commande TLV est codée sur deux
octets.

if (tlv_type == 2) {

if (*ptr_to_malloc_result != 0) {
butfer _copy(*ptr_to_malloc_result,tlv_buffer + 3,tlv_length};
print{[+] _Heap_overflow_triggered);
return;

b

print([-]_No_allocated _memory);

return;

}

4.3 Faire crasher le systeme et dump des registres

m Type Oxcc: Faire crasher le systéme

if (tlv_type == Oucec) {
FUN_0800078c () ;
return;

}

La premiere étape consiste a examiner le contenu de la fonction FUN_0800078c :

void FUM @8200878c (void)

i

if (*DAT oE0007h4 1= 'we') {
print (DAT 0S0007bE) ;
FUN_B22000E5280 () ;
FUN_22000734 () ;
print (DAT 020007bc) ;
disableIRQinterrupts();
do {

A WARNING: Do nothing block with infinite loop */

¥} while(true J:

¥

print (DAT_0S0007ci);

return;

40

.
Avec les chaines de caracteres :

void FUN_0800078c(void)

{

if (*DAT_080007b4 '= "\0') {
print([!]_SYSTEM CRASH DETECTE);
FUN_G8000680 () ;
FUN_08000734();
print([!]_Halting_system);
disableIRQinterrupts();
do {

/¥ WARMING: Do nothing block with infinite loop */

} while(true);

h

print([-]_Debug_mode_required);

return;

b

DAT_080007b4 pointe vers la méme zone mémoire que celle que avons déja identifiée comme la
zone ol est stockée la valeur indiquant si le mode DEBUG est activé ou non. Cette commande

permet donc de provoquer un crash dans le systeme, mais elle n'est disponible qu'en mode DEBUG.

vold FUN_0800078c (vold)

{

if (*DebugModeEnabled = '\0') {
print([!]_SYSTEM CRASH DETECTE):
FUN_ 08000880 () ;
FUN 08000734();
print([!] Halting system);
disableIRQinterrupts();
do {

J* WARNIMG: Do nothing block with infinite loop #/

} while(true)

b

print([-]1_Debug mode_required);

return;

I

m Type Oxbb : dump des registres

if (tlv_type == Oxbb) {
FUN_Q2000734() ;
return:

T

1

I
La premiere étape consiste a examiner le contenu de la fonction FUN_08000734 :

void FUN 08000734 (void)

{
bool bvarl;
uint uvarz;
uint uVars;
undefinedd in_rl12;
undefinedd uvard;
char 1n_NG;
char in_7R;
char in_CY;
char 1n_0OV;
byte in_0;
undefined& uVars;
undefined auStack 118 [260];

1f (*DAT_0800077c == '"\0') {
print (DAT_0S000788);

else {
uVard = 0x8000745;
uvarS = print(DAT_0BOGOO7E0)
uVar3 = (uint) (byte) (1n_NG << 4 | in 7R << 3 | 1n CY << 2 | 1n_0V =< 1 | 1in_0Q) =< Oxlb;
bvarl = (bool)isCurrentModePrivileged();
if (bvarl) {
uvar2 = getCurrentExceptionhumber();
uvar3 = uvar3 | uvar2 & oxlf;
}
FUN_08004554 (auStack_118,DAT_08000784, (int)uvars, (int) ((ulonglong)uvars == 0x20),uVars,in_rlz,
uVard, 0x8000754, uvar3);
print(austack_118);
}

return;

Avec les chaines de caracteres :

1T (*¥DAT _0BOOOT7c == '"\0') {
print([-]1_Debug mode required);

¥

else {
uvard = 0xB000745;
uVars = print([DEBUG] Register Dump);

DAT_0800077c pointe vers la méme zone mémoire que celle que avons déja identifiée comme la
zone ol est stockée la valeur indiquant si le mode DEBUG est activé ou non. Gette commande

permet donc de dump des registres mais elle n'est disponible qu'en mode DEBUG.

42

[
4.4 Types de commandes supplémentaires

m [ype Oxff: Sortir du mode TLV

if (tLlw_type == oxffl) {
*DAT Q0200094c = O;
print{(Exiting_TLW model:
return;

¥

DAT_0800094c pointe vers la méme zone mémoire que celle que nous avons déja

identifiée comme la zone ol est stockée la valeur indiquant si le mode TLV est activé ou non.

if (tlv_type == Oxff) {
*T1lvModeEnabled = 0;
print(Exiting TLV mode);
return;

}

m Type 0x42 : Dump du flag et sortir du mode TLV

else 1f (tlv_type == 0Oxa42) {
*TLwModeEnabled = ©;
FUM_ 22000810 (austack_ 7o) ;
uvwarl = Entering TLV command mode;
print{(Entering_TLY command_model;
print{ausStack_70OJ);
printiuvarl):;
return:

La premiére étape consiste a examiner le contenu de la fonction FUN_08000810 : cette

fonction charge du contenu depuis la SRAM dans le tampon auStack_70.

43

& Usting: firmware_dump_after tpe O & 5 - @ [l - %| /6 pecompile: FUN 08000810 - (firmware_dump_after update_before.bin)
= [5 irpm | 5

/I SRAM r 2(void FUN_0BDOO810{int param_1)

/4 ram:20000000- ram: 2001 FFFf B

M = al

5| uint uvarl:
DAT_ 20000000 5
) F| for {uVarl = 0; uWarl < Oxll; uVarl = u¥arl + 1) {
.] *[byte *}{param_1 + uVarl) = *(byte *)(DAT_0802082c + uVarl) = Oxd2;

20000000 19 0e lc 21 undefinedd 211C0EL%H 8 3
20000004 12 ? 12h 18| *{undefined *)(param_1 + 0xll1) = O
20000005 3t # 3Fh ? 11| return; .
20000006 #? | 12}
20000007 2a #? 2%h 13
20000008 15 7 15h
20000005 2o s 2th =
2000000a 3 L 3Fh ¥
20000000 28 7 Zh (|
2000000c 2c #F 3Ch <
20000004 36 T 35h]
2000000 35 i3 35h -]
2000000 2d #? 20h -
20000010 27 7 2Th .
20000011 0D 7 Qah
20000012 0D 7 0ah
20000013 0D [00h

Comme cela sera expliqué dans les chapitres suivants du rapport, ce sont des éléments qui
permettront de retrouver le Flag. Enfin, nous remarquons que cette commande, comme la
commande Oxff, désactive le mode TLV, ce qui est étrange, car cela contredit les messages

affichés a l'utilisateur.

44

4.5 Reécapitulatif

vold FUN_0B0008Sc (byte *tlv_buffer,uint tlv_buffer_len)

{
undefined4 uvarl;
int malloc_result;
undefined ausStack 70 [32];
undefined auStack 50 [64];
undefined2 tlv_Tlength;
byte tlv_type;

if (tlv_buffer len < 3) {
print{Invalid TLV command};
}
else {
tlv_type = #tlv_buffer;
tlv_length = *(undefined2 *) (tlv_buffer + 1);
FUN_0B004554 (auStack_5S0, [DEBUG] _TLV Received_- Type: Ox%,tlv_type.tlv_length);
print{austack _S0};
if (tlv_type == Oxaa) {
FUN_0B000680() ;
}
else {
if (tlv_type = Oxab) {
if (tlv_type == 3) {
free(*ptr_to_malloc_result);
print{[+] Memory freed);
return;
b
if (tlv_type < 4) {
if (tlv_type == 1) {
*ptr_to malloc_length = tlv_Tlength;
malloc_result = malloc(tlv_length);
*¥ptr_to malloc_result = malloc_result;
if (malloc_result != 0) {
print{[+]_Memory_allocated);
return;
}
print([-]_allocation_failed);
return;

45

|
if (tlv_type == 2) {
if (*ptr_to_malloc_result != 0) {
buffer_copy (*ptr_to_malloc_result,tlv_buffer + 3, tlv_length);
print{[+]_Heap_overflow_triggered);
return;
}
print{[-]_No_allocated_memory};
return;
L
L

else if (tlv_type == Ox42) {
*TlvModeEnabled = 0;
FUN_G8000816 (auStack_70);
uVarl = Entering TLV command_mode;
print (Entering TLV command mode);
print{austack_70);
print{uvarl);
return;
}
}
else {
if (tlv_type == Oxcc) {
FUN_GBO0G7Ec (),
return;
}
if (tlv_type == Oxff) {
#TlvModeEnabled = ©;
print(Exiting TLV mode);
return;
1
if (tlv_type == Oxbb) {
FUN 0B00073410();
return;
}
L
print (Invalid_TLV_command);
b
}

return;

Nom du Taille du champ
champ

Length 2 Octets

46

Selon la partie Length

Demande d‘allocation mémoire

Copier la partie Value de la commande TLV dans le tampon alloué

Libération de I'allocation mémoire

Value

Type de
commande

1
2

Faire crasher le systeme (disponible qu'en mode DEBUG)

Dump des registres (disponible qu'en mode DEBUG)
Dump du flag et sortir du mode TLV

Sortir du mode TLV

0x42

[

5. Vulnérabhiliteés

5.1 Heap Overflow
CWE-122: Heap-hased Buffer Overflow

Un Heap overflow se produit lorsqu'un programme écrit plus de données dans un bloc de mémoire
alloué dynamiquement (sur le tas) que sa taille allouée. Un débordement de tas peut entrainer la
corruption des structures de données de tas adjacentes et peut entrainer l'exécution de code

arbitraire au nom de I'attaquant.’

Dans notre cas, un dépassement de tas peut se produire, car la commande qui permet l'allocation
de mémoire de taille X (commande de type 1) est completement séparée de la commande qui
permet la copie d'une valeur vers cet emplacement mémoire (commande numéro 2). Ainsi, apres
avoir demandé une allocation de mémoire de taille X, rien nempéche l'utilisateur de demander de

copier un contenu de taille X+ n dans cette zone mémoire, entrainant un dépassement.

if (tlv_type == 1) {
¥ptr_to_malloc_length = tlv_length:
malloc_result = malloc({tlv_length):
¥ptr_to_malloc_result = malloc_result;
if (malloc_result !'= 0) {
print ([+] Memory allocated);
return;
}
print([-]1_Allocation_failed);
return;
}
1f (tlv_type == 2} {
if (*ptr_to_malloc_result !=0) {
buffer_copy (*ptr_to_malloc_result,tlv_buffer + 3,tlv_length):
print([+]_Heap_overflow_triggered);
return;
}
print([-]1_Mo_allocated_memory):
return;

2 https://www.packetlabs.net/posts/demystifying-overflow-attacks/

48

[]
5.2 Use After Free

CWE-416: Use After Free

Cette vulnérabilité se produit lorsque du code réutilise de la mémoire aprés sa libération. Par la
suite, la mémoire peut étre a nouveau allouée et sauvegardée dans un autre pointeur, tandis que le
pointeur d'origine référence un emplacement situé quelque part dans la nouvelle allocation. Toute
opération utilisant le pointeur d'origine n'est plus valide, car la mémoire « appartient » au code qui
opere sur le nouveau pointeur. Cette vulnérabilité peut entrainer une valeur inattendue, un crash, ou

une exécution de code ®

Dans notre cas, lorsqu'un utilisateur demande de libérer une allocation mémoire (TLV de Type 3), le
pointeur *ptr_to_malloc_length n'est pas réinitialisé et continue de pointer vers la méme zone
mémoire, donc rien nempéche l'utilisateur d'utiliser un TLV de Type 2 et de demander de copier du

contenu vers la zone mémoire libérée.

if (tlv_type == 3} {
[free(*ptr_to_malloc_result):
print([+]_Memory_freed);
return;
T
if (tlv_type = 4) {
if (tlv_type == 1) {
*ptr_to_malloc_length = tlv_length;
malloc_result = mallec({tlv_length);
#¥ptr_to_malloc_result = malloc_result;
if (malloc_result != @) {
print([+]_Memory_allocated);
return;
¥
print([-]1_Allocation_failed):
return:
¥
if (tlv_type == 2) {
if (*ptr_to_malloc_result != 0) {
buffer_copy (*ptr_to_malloc_result,tlv_buffer + 2, tlv_Tlengthl:
print ([+]_Heap_overflow_triggered);:
return;
}
print([-]_MNo_allocated_memory):
return:
¥

3 https://cwe.mitre.org/data/definitions/416.html

49

5.3 Vulnérabhilité aux attaques temporelles (7iming attack)
CWE-208: Observable Timing Discrepancy

Cette vulnérabilité se produit lorsque deux opérations distinctes dans un code nécessitent des
durées différentes pour étre exécutées, d'une maniere qui est observable pour un acteur et révele
des informations pertinentes pour la sécurité sur I'état du produit, par exemple si une opération

particuliere a réussi ou non.’

Dans notre cas, la fonction qui compare le mot de passe saisi par l'utilisateur avec le vrai mot de
passe reviendra immédiatement a la fonction appelante aprés avoir rencontré un caractere invalide,
et au contraire, exécutera une boucle avec un nombre potentiellement important d'itérations apres
chaque comparaison réussie. De cette fagon, un attaquant peut essayer de saisir différentes entrées
et mesurer le temps jusqua ce quiil recoive un message derreur pour savoir si peut-étre au moins

une partie du mot de passe qu'il a saisi est correct.

int FUN_0B8000833(1nt buffer_addr_1,int buffer_addr_2)

{
uint current_char;
int 1i;

for (1 = 0; (current_char = (uint)*(byte #*) (buffer_addr_1 + 1), current_char !=0 &&
(*(byte *)(buffer_addr 2+ 1) !=0)); 1 =1+ 1) {
1t (current_char != #({byte #*){buffer_addr_2 + 1)) {
return 1;
1
FUN_08002d44 (0x32) ;
1
1 = current_char - *(byte *)(buffer addr 2 + 1};
if (1 1=0) {
1=1;
1

return 1;

* https://cwe.mitre.org/data/definitions/208 html

o0

I
5.4 Divulgation de trop d'informations en mode DEBUG

CWE-1295: Debug Messages Revealing Unnecessary Information
CWE-215: Insertion of Sensitive Information Into Debugging Code

Dans notre cas, le mode DEBUG accorde a l'utilisateur des autorisations de grande portée (la
possibilité de visualiser le contenu des registres et méme de provoquer un crash du systeme), son
activation est trop simple (en saisissant au moins un mot de passe incorrect puis en saisissant le
mot de passe DEBUG123). De plus, ce mode révele completement le vrai mot de passe a
[utilisateur.

vold FUN_080007c4(int buffer_ptr)

{

uint 1i;

for (1 =0: 1i<7;:1=1+1){1
*¥(byte *) (buffer_ptr + 1) = *(byte *)(DAT_ 08000800 + 1) ~ OxS5a;
1
*(undefined *) (buffer_ptr + 7) = 0;
if (*DebugModEnabled == "x01') {
print ([DEBUG] Decrypted_password);
print (buffer_ptri:
print(Entering_TLV_command_mode);
1
return;

o1

6. Interaction avec le Microcontroleur

6.1 La commande Screen

En branchant le microcontréleur au port ush de lPordinateur nous le retrouvons sous le nom de
périphérique ttyACMO.

dmesg

rice= 1.00

3 modems and ISDN adapters

Dans un premier temps nous avons interagi a l'aide de la commande screen en se connectant avec
le mot de passe DEBUG123:

sudo screen /dev/ttyACMO0 115200
6.2 Script Python

Avec screen nous ne pouvions pas communiquer en TLV. Nous avons donc fait un script python.

Dans un premier temps nous nous connectons automatiquement :

52

():
serial.Serial(PORT, BAUD, timeout=TIMEQUT) Ser:
time.sleep(5)

o E
ser.write(b'D

time.sleep(2)
response = ser.read_all()

("[*] Response:")
(response.decode(errors="ignore'))
("[*] se

ser.write(b'DE

time.sleep(2)
response = ser.read_all()

Puis faisons de multiples appels a la fonction send_tlv, qui envoi des paquets TLV et affiche les

réponses :

(ser, tag, wvalue=b VE

length (value)

packet bytes([tag, lengthl) + wvalue
("value™")
(value)

ser.write(packet)

time.sleep(b]
resp = ser.rvead_all()
resp:
("< Re onse: "

(reép;decédé

Une fois les paquets TLV envoyés nous pouvons envoyés des strings écrites par l'utilisateur

directement dans le cmd :

93

cmd = ("=

)

cmd.strip().lower() ["exit", "quit"]:

ser.write((cmd + " ").encode())

time.sleep(0.1)

resp = ser.read_all()
(resp.decode(errors="ignore'))

Exemple d’utilisation :

3533 '_—f_mvenv)*f_(:lem-.i%kali)7[»/"Do(:uments/reverse/'exam/exoz]

3534 % sudo myenv/bin/python3 script-ASM.py

3535 [*] Sending password ...

3536 [*] Response:

3537

3538 Access denied. Try again

3539 Enter password:

3540 [*] sending password ...

3541 [*] Response:

3542

3543 Access granted! Enter TLV commands.

3544 Entering TLV command mode ...

3545

3546 value

3547 b'@"

3548 < Response:

3549 @

ELLTRVER RIS

3551 b'10’

3552 =< Response:

3553 @

3554 value

3555 b'@1111110"

3556 < Response:

3557 @

3558 EXIT :

3559 value

3560 b'11111110"

3561 < Response:

3562 @

3563 value

3564 b"11111113131311113311"

3565 =< Response:

3566 1

3567 value

3568 b"111111133137131113337333333733333373333337333333333333333333317
111111111@"°

3569 < Response:

3570 1@

3571 >> exit

Cependant nous n'avions pas trouvé la valeur a envoyer, nous avons donc fait des tests et

remarquons que les réponses retournées sont le ou les derniers caracteres de la valeur.

6.3 Exploitation du mode DEBUG

Une fois que nous avons recueilli toutes les informations sur le mode DEBUG, nous pouvons accéder

au mode TLV en suivant ces étapes :

54

I
e Saisir un mot de passe incorrect.

e Entrer le mot de passe DEBUG123 pour activer le mode DEBUG.

e Saisir a nouveau un mot de passe incorrect.

Le vrai mot de passe est alors affiché a l'utilisateur, car en mode DEBUG, le mot de passe est révélé

lorsqu'il est chargé dans le tampon.

~/Documents/reverse/exam/exo2

sCcript-ASM.
*] Sending pas
Response:

[DEBUG] Decrypted pa
Access denled. Try .
Enter password:

> DEBUG123

[DEBUG] Decrypted pa
Access denied. Try :

Enter TLV commands.

6.4 Flag

Flag dans le mauvais format

99

I
En exécutant plusieurs fois le script d‘affilée nous avons réussi a obtenir le flag mal formé (un xor

etait effectué avec la valeur 0x42 au lieu de 0x5A). Nous avions eu aussi cette méme string en

utilisant la commande screen.
Cela nous donne : [LAcP}yhWn}j~twoe.

Ce script permet la connexion automatique (avec le mot de passe letmein) et essaye de

communiquer en TLV en utilisant le type 0x42 afin d’envoyer des commandes.

~/Documents/reverse/exam/exo2

[*] Sending password ...
[#] Response:

[DEBUG] TLV Re ved - Type: 8x42, Length:
[L"cP}yhWn}j

Er password:

[*] Sending password ...

[#] Response:

Access granted! Enter TLY commands.
Entering TLV command mode ...

value

b'e"

% Response:
5}

value

b'1@"*

£ Response:
5}

Flag dans le bon format

L'unique moment ol nous avons utilisé le fichier ELF fourni a été pour trouver le flag. En allant dans
la fonction DecryptFlag nous remarquons que la valeur dans la ram a l'adresse 0x20000000 et la

valeur 0x42 sont utilisées pour faire un xor et que le résultat est le flag déchiffreé.

96

.
4wold DecryptFlag({char *output)
=
5 {
7 ouint uVarl;
=
= for (uvarl = Q; uVarl = GOx11; uWarl = uVWarl + 1) {
1@ outputluvarl] = #*(byte *){uVarl + OxZO000Q233) = Oxd42;
11 T
12 output[Ox1ll] = '“O';
1= return;
141

En allant a 'adresse 0x20000000, grace au dump de la ram effectué plus tot nous trouvons cette

string.
20000000 19 0e 1c uint8 _t[... 18h,0Eh,1Ch,"!", 12k, "?;#" 15h,", ?(=65-"" - ; main.c:6l
21 12 =f
3h Za 15 .

Cependant en effectuant un xor en utilisant 0x42 avec chaque caractére cela nous donne :
[LAcP}yhWn}j~twoe

Nous avons donc décidé de brute force la valeur avec laquelle il faut exécuter le xor :

decoded = '".join(chr(b " key) b tab)
de;uded | _decuded:

.
Cela nous donne :

~/Documents/reverse/exam/exo2

decrypt.py
" @=51] H_MpCni{D}nymgd|v

" @x57] NYKvEhl}B{hkabzp
" @%5A] CTF{HeapOverflow}
" Bx5C] ER@}NcgvIpct jig{

Nous remarquons une string intéressante : CTF{HeapOverflow}

C’est hien le flag !

6.5 Exploitation d’une vulnérabhilité

Nous avons tenté d’exploiter la vulnérabilité de heap overflow a I'aide du script python. En reprenant
les fonctions vues ci-dessus, nous nous sommes connectés puis nous avons envoyé un premier
paquet TLV afin d’allouer une taille de buffer de 32 bits. Ensuite, nous avons envoyé un deuxieme
paquet afin de remplir le buffer avec un payload de 128 bits, dépassant ainsi la taille du buffer.

Cependant nous n'avons pas eu le temps de tester ce code.

("[+] Allocating 32-b
send_tlv(ser,

{.. SENd1ng werflow payload (12
overflow_payload = b'A" *
send_tlv(ser, , overflow_payload)

Bibliographie

GLiNet :

o https://gzhls.at/blob/Idb/3/5/7/2/514814232500chfeedc718795d96¢2183748.pdf
https://images-na.ssl-images-amazon.com/images/I/B1oCL2RA8YS pdf
https://www.gl-inet.com/products/gl-mt300n-v2/
Datasheet MT/628:
https://www.alldatasheet.com/datasheet-pdf/view/1131988/ETC2/MT1628.html?ref=bosch
ko.ca
Datasheet Winbond :

e https://www.lcsc.com/datasheet/lcsc datasheet 2412251211 Winbond-Elec-W25Q128)VSI

Q_C97521.pdf
Micron D9RZH :

e https://www.worldwayelec.com/pro/micron/d9rzh/3866633
e https://www.micron.com/products/memory/dram-components/ddr2-sdram/part-catalog

Programming manual PM0214 :
e https://www.st.com/resource/en/programming_manual/pm0214-stm32-cortexm4-mcus-an
d-mpus-programming-manual-stmicroelectronics.pdf
Datasheet STM32F40XXX :
e https://www.st.com/resource/en/datasheet/dm00037051.pdf
STM32F405.svd :
e https://github.com/modm-io/cmsis-svd-stm32/blob/main/stm32f4/STM32F405.svd

99

https://gzhls.at/blob/ldb/3/5/7/2/574814232500cbfeedc718795d96c2783748.pdf
https://gzhls.at/blob/ldb/3/5/7/2/574814232500cbfeedc718795d96c2783748.pdf
https://images-na.ssl-images-amazon.com/images/I/B1oCL2RA8YS.pdf
https://www.gl-inet.com/products/gl-mt300n-v2/
https://www.alldatasheet.com/datasheet-pdf/view/1131988/ETC2/MT7628.html?ref=boschko.ca
https://www.alldatasheet.com/datasheet-pdf/view/1131988/ETC2/MT7628.html?ref=boschko.ca
https://www.lcsc.com/datasheet/lcsc_datasheet_2412251211_Winbond-Elec-W25Q128JVSIQ_C97521.pdf
https://www.lcsc.com/datasheet/lcsc_datasheet_2412251211_Winbond-Elec-W25Q128JVSIQ_C97521.pdf
https://www.worldwayelec.com/pro/micron/d9rzh/3866633
https://www.worldwayelec.com/pro/micron/d9rzh/3866633
https://www.micron.com/products/memory/dram-components/ddr2-sdram/part-catalog
https://www.st.com/resource/en/programming_manual/pm0214-stm32-cortexm4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/pm0214-stm32-cortexm4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://github.com/modm-io/cmsis-svd-stm32/blob/main/stm32f4/STM32F405.svd
https://github.com/modm-io/cmsis-svd-stm32/blob/main/stm32f4/STM32F405.svd

Annexe

Code 1

Version 1 du code pour exploiter le heap overflow, avec des sleep :

import serial

import time

PORT ='/dev/ttyACMO’
BAUD = 115200

TIMEOUT =1

def send_tlv(ser, tag, value=b"):
length = len(value)
length_bytes = length.to_bytes(2, byteorder='"little")
packet = bytes([tag]) + length_bytes + value
print(f"=> Sent TLV: tag=0x{tag:02X}, len={length}")

ser.write(packet)

time.sleep(1)
resp = ser.read_all()

if resp:

[
try-

print("<= Response:")
print(resp.decode(errors="ignore"))
except:
print("<= [Binary Data]")
print(resp)
else:

print("<= No response")

def main():
with serial.Serial(PORT, BAUD, timeout=TIMEOUT) as ser:
Let the device initialize

time.sleep(3)

Authenticate with password
print("[*] Sending password...")
ser.write(b'letmein\n")
time.sleep(2)

response = ser.read_all()
print("[*] Response:")

print(response.decode(errors='ignore"))

Send password twice

print("[*] Sending password...")

61

.
ser.write(b'letmein\n")

time.sleep(2)
response = ser.read_all()
print("[*] Response:")

print(response.decode(errors='ignore"))

STEP 1: Allocate a small buffer (Type 1, Length 32)
print("[*] Allocating 32-byte heap buffer...")

send_tlv(ser, 0x01, b"\x00' * 32)

STEP 2: Trigger overflow with 128-byte payload (Type 2, Length 128)
print("[*] Sending overflow payload (128 bytes)...")
overflow_payload = b'A' * 128

send_tlv(ser, 0x02, overflow_payload)

62

Code 2

Version 2 : nous avons modifié le code afin de ne plus utiliser sleep mais des expect. Voici le code

final pour exploiter le heap overflow :

import pexpect

from pexpect_serial import SerialSpawn

PORT ='/dev/ttyACMO’

BAUD = 115200

def send_tlv(ser, tag, value=b", expect=None):
length = len(value)
length_bytes = length.to_bytes(2, byteorder="little")
packet = bytes([tag]) + length_bytes + value
ser.write(packet)

print(f"=> Sent TLV: tag=0x{tag:02X}, len={len(value)}")

if expect:
try:
ser.expect(expect, timeout=3)
print("<= Expected response:")
print(ser.before.decode(errors='ignore") + ser.after.decode(errors='ignore"))
except pexpect.TIMEOUT:

print(f"<= Timeout waiting for: {expect}")

63

I
except Exception as e:

print("<= Error:", e)
else:
try:
response = ser.read_nonblocking(size=1024, timeout=1)
print(response.decode(errors='ignore"))
except:

print("[No immediate response]™)

deflogin(ser):
for attempt in [1, 2]:
print(f"[*] Login attempt {attempt} with 'letmein'")
ser.expect("Enter password:", timeout=3)
ser.sendline("letmein")
ser.expect("Access granted!", timeout=3)

print("[+] Authenticated.")

def main():

ser = SerialSpawn(PORT, baudrate=BAUD, timeout=1)

Perform login twice

login(ser)

Step 1: Allocate 32-byte buffer

64

.
print("[*] Allocating heap...")

send_tlv(ser, 0x01, b"\x00' * 32, expect="Memory allocated")

Step 2: Overflow with 128 bytes

print("[*] Sending overflow payload...")

overflow_payload = b’A' * 128

send_tlv(ser, 0x02, overflow_payload, expect="Heap overflow triggered")
if _name__=="'_main_":

main()

65

	Sommaire
	Analyse matérielle
	1. Analyse matérielle du routeur GL.iNet 300M
	1.1 Analyse matérielle avec photos
	1.2 Composants identifiés
	1.3 Architecture du routeur
	1.4 Stockage du code
	1.5 Extraction et modification du firmware

	
	
	Analyse, recherche de bugs et exploitation
	1. Analyse du PCB et extraction du firmware
	1.1 Analyse du PCB
	1.2 Localisation des éléments critiques
	1.3 Connexion JTAG et dump du firmware
	1.4 Dump de la ram​
	1.5 Analyse du SVD (System View Description)

	2. Configuration de Ghidra
	2.1 Chargement dans Ghidra
	2.2 Chargement du SVD (System View Description)

	3. Étude de l’authentification
	3.4 Fonction de validation du mot de passe

	4. Analyse des commandes TLV
	4.1 Le schéma de codage TLV dans le code C
	4.2 Gestion des allocations mémoire
	4.3 Faire crasher le système et dump des registres
	4.4 Types de commandes supplémentaires
	4.5 Récapitulatif

	5. Vulnérabilités
	5.1 Heap Overflow​CWE-122: Heap-based Buffer Overflow
	​5.3 Vulnérabilité aux attaques temporelles (Timing attack)​CWE-208: Observable Timing Discrepancy

	6. Interaction avec le Microcontrôleur
	6.3 Exploitation du mode DEBUG

	Bibliographie
	Annexe
	Code 1
	Code 2

