

Reverse Engineering​
Sécurité des systèmes
embarqués
​

​
​
​
​
​
​
​
​
Clement C. Carole F. Léonard Namolaru ​
23 mars 2025​
​
​
La structure globale du fichier est basée sur un modèle de la galerie des modèles de Google Docs : Fiche de lecture par Reading Rainbow

Sommaire
Sommaire​ 1

Analyse matérielle​ 2

1. Analyse matérielle du routeur GL.iNet 300M​ 3

Analyse, recherche de bugs et exploitation​ 7

1. Analyse du PCB et extraction du firmware​ 8

2. Configuration de Ghidra​ 15

3. Étude de l’authentification​ 22

4. Analyse des commandes TLV​ 34

5. Vulnérabilités​ 48

6. Interaction avec le Microcontrôleur​ 52

Bibliographie​ 59

Annexe​ 60

​

​

1

Analyse matérielle

2

1. Analyse matérielle du routeur
GL.iNet 300M
1.1 Analyse matérielle avec photos

 Photos de la carte mère du routeur GL.iNet 300M : vue du dessus, de face et arrière

Ces images présentent la carte électronique du routeur sous différents angles. Nous pouvons
identifier :

●​ Les puces principales (SoC, mémoire Flash et RAM).
●​ Les interfaces physiques (ports USB, micro-USB, Ethernet).
●​ Les connecteurs de debug (UART).
●​ Le blindage métallique, qui protège les composants RF (Radio Fréquence).

3

1.2 Composants identifiés

●​ SoC (System on Chip) : MediaTek MT7628NN - Processeur principal du routeur, intègre un
processeur MIPS 24KEc cadencé à 580 MHz, un module Wi-Fi 2.4 GHz, un contrôleur
Ethernet et la gestion de l'interface USB.

●​ Mémoire Flash : Winbond 25Q128JVSQ (128Mb soit 16Mo de NOR Flash) - Contient le
firmware du routeur, basé sur OpenWRT.

●​ Mémoire RAM : Micron D9RZH (7QMI7) (64 Mo de DDR2) - Stocke les données en cours
d'exécution.

●​ Composants RF :
○​ Un module Wi-Fi intégré au SoC permet la transmission sur la bande 2.4 GHz

(802.11n).
○​ Un blindage métallique recouvre certains circuits pour éviter les interférences

électromagnétiques.
○​ Une piste d’antenne est présente sur le PCB, assurant l’émission et la réception du

signal Wi-Fi.

1.3 Architecture du routeur

●​ Processeur et gestion du réseau
○​ Le SoC MediaTek MT7628NN gère l’ensemble des fonctionnalités du routeur, incluant

le Wi-Fi, l’Ethernet et l’USB. Il intègre également un switch Ethernet pour la gestion
des ports réseau.

●​ Stockage et exécution du système
○​ Le firmware OpenWRT est stocké dans la mémoire Flash Winbond de 16 Mo.

4

○​ Il est chargé en RAM Micron D9RZH 64 Mo DDR2 lors de l’exécution.
○​ Un port UART (J12) permet un accès direct au terminal du routeur pour du debug ou

du flashage de firmware.
●​ Connectivité et interfaces

○​ Wi-Fi 2.4 GHz : Permet de créer un point d’accès ou un répéteur.
○​ Ports Ethernet WAN/LAN : Assurent la connectivité filaire en 10/100 Mbps.
○​ Port USB Type-A : Peut être utilisé pour connecter un stockage externe ou un

modem 4G.
○​ Port micro-USB : Fournit l’alimentation en 5V/1A.

1.4 Stockage du code

Le GL.iNet 300M Mini Smart Router stocke son firmware OpenWRT dans une mémoire Flash NOR
externe Winbond W25Q128JVSIQ, connectée au SoC MediaTek MT7628NN via un bus SPI. Au
démarrage, le SoC exécute le bootloader U-Boot depuis cette mémoire Flash, qui initialise le
matériel et charge le noyau Linux en RAM DDR2 Micron D9RZH pour exécution. Le protocole utilisé
pour la communication entre la Flash et le SoC est SPI NOR Flash Read/Write.

1.5 Extraction et modification du firmware

Le routeur GL.iNet 300M offre plusieurs méthodes pour extraire ou modifier le firmware OpenWRT :

●​ Via l’interface web OpenWRT (LuCI) : Permet de mettre à jour facilement le firmware
depuis l’interface graphique.

●​ Par connexion SSH : En accédant au système de fichiers et aux partitions MTD via
terminal (cat /dev/mtdX, scp, etc.).

5

●​ Par la console UART (port J12) : Accessible physiquement sur la carte, ce port permet
d’entrer dans U-Boot pour interrompre le démarrage, lancer une mise à jour via TFTP, ou
reprogrammer la mémoire.

●​ Via un programmeur SPI : Si le firmware est corrompu, il est possible de dessouder ou
clipper la puce Flash Winbond W25Q128 et d’en extraire le contenu avec un lecteur SPI
(comme CH341A) et des outils comme flashrom.

6

Analyse, recherche de
bugs et exploitation

7

1. Analyse du PCB et extraction du
firmware
1.1 Analyse du PCB

Composants visibles et leurs références

●​ Microcontrôleur principal : STM32F405RGT6, son architecture est basée sur le cœur
ARM Cortex-M4, avec unité de calcul en virgule flottante (FPU) et instructions DSP.​

●​ Mémoire externe probable : Circuit CMS à gauche du MCU.
●​ Connecteur USB-A
●​ Connecteur SWD (5 broches) : VCC, SWCLK, GND, SWIO, NRST.
●​ Quartz : Oscillateur à boîtier métallique.
●​ Régulateur de tension : Probable AMS1117 (boîtier SOT-223).
●​ Composants passifs : Résistances, condensateurs CMS.

1.2 Localisation des éléments critiques

Stockage du firmware

●​ Le firmware est stocké dans la mémoire Flash interne du microcontrôleur STM32F405RGT6,
qui possède 1 Mo de Flash intégrée.

●​ Adresse de base : 0x08000000

Table des interruptions (Vector Table)

8

Au moment du reset, la table des vecteurs d’interruptions est localisée par défaut à l’adresse
0x00000000. Cependant, une fois le système démarré, le firmware peut modifier cette adresse
via le registre VTOR (Vector Table Offset Register) pour pointer, par exemple, vers 0x08000000
(début de la Flash interne).

●​ Adresse par défaut : 0x00000000

●​ Adresse après relocation : 0x08000000

Adresse du pointeur de pile au démarrage

Le pointeur de pile initial (MSP) est la première entrée de la table des vecteurs. Il est donc lu à
l’adresse :

●​ 0x00000000 juste après le reset (avant modification du VTOR)
●​ Cette valeur est copiée dans le registre SP (Stack Pointer) par le processeur.

Adresse du vecteur de réinitialisation

Le vecteur de réinitialisation est la deuxième entrée de la table des vecteurs, immédiatement après
le pointeur de pile. Il est lu à l’adresse :

●​ 0x00000004

●​ Il contient l’adresse de la fonction Reset_Handler, qui est exécutée immédiatement après un
reset.

9

1.3 Connexion JTAG et dump du firmware

10

​
git clone https://github.com/openocd-org/openocd​
openocd -f openocd/tcl/interface/stlink.cfg -f openocd/tcl/target/stm32f4x.cfg

gdb-multiarch ​
(gdb) set architecture arm​
(gdb) target extended-remote localhost:3333​
(gdb) dump memory firmware_dump_after_update.bin 0x08000000 0x08010000​
(gdb) quit

​
​
sha256sum firmware_dump_after_update.bin

11

1.4 Dump de la ram​

(gdb) dump binary memory dump_ram.bin 0x20000000 0x20020000

1.5 Analyse du SVD (System View Description)

Identification des périphériques mémoire et registres importants

12

Le fichier SVD utilisé pour cette analyse est le fichier officiel fourni pour le microcontrôleur
STM32F405RGT6, dont le lien est référencé dans la bibliographie. Ce fichier, structuré en XML,
décrit l’ensemble des périphériques mémoire mappés du système ainsi que leurs registres internes,
voici les plus importants :

●​ RCC (Reset and Clock Control)
○​ CR - Contrôle de l'oscillateur principal et PLL
○​ PLLCFGR - Configuration de la PLL
○​ CFGR - Configuration de l'horloge système
○​ CIR - Contrôle des interruptions liées à l’horloge
○​ AHB1ENR, APB1ENR, APB2ENR - Activation des horloges pour les périphériques

●​ GPIOA à GPIOI (Ports d’entrée/sortie)
○​ MODER - Configuration des modes des broches (entrée, sortie, alternatif…)
○​ OTYPER - Type de sortie (push-pull/open-drain)
○​ OSPEEDR - Vitesse de la broche
○​ PUPDR - Pull-up/pull-down configuration
○​ IDR - Lecture des entrées
○​ ODR - Écriture des sorties
○​ BSRR - Mise à 1 ou à 0 d’une broche
○​ LCKR - Verrouillage de configuration
○​ AFR[0], AFR[1] - Fonctions alternatives

●​ USART1, USART2, USART3, UART4, UART5 (Communication série)
○​ SR - Status (drapeaux de transmission, réception…)
○​ DR - Données à envoyer ou reçues
○​ BRR - Baud rate (vitesse de transmission)

13

○​ CR1, CR2, CR3 - Contrôle de la configuration UART
●​ SPI1, SPI2, SPI3 (Interface SPI)

○​ CR1, CR2 - Configuration (mode maître/esclave, vitesse, etc.)
○​ SR - Statut SPI
○​ DR - Registre de données

●​ I2C1, I2C2, I2C3 (Interface I²C)
○​ CR1, CR2 - Contrôle
○​ SR1, SR2 - Statuts et événements
○​ DR - Données
○​ CCR - Contrôle de la vitesse
○​ TRISE - Temps de montée

●​ USB_OTG_FS / USB_OTG_HS (Interface USB OTG)
○​ GOTGCTL, GOTGINT - Contrôle général
○​ GAHBCFG, GUSBCFG - Configuration du bus et de l’interface USB
○​ GRSTCTL, GINTSTS - Reset, statut des interruptions
○​ DIEPCTL, DOEPCTL - Contrôle des endpoints (IN/OUT)

14

2. Configuration de Ghidra
2.1 Chargement dans Ghidra

Nous commençons par charger le fichier du firmware dans le logiciel Ghidra en faisant glisser le
fichier dedans. Après cela, la fenêtre suivante s'affiche. Nous définissons ensuite
“ARM-Cortex-32-little" comme langage.

15

Nous double-cliquons maintenant sur le nom du fichier mais choisissons de ne pas l'analyser pour
l’instant.

2.2 Chargement du SVD (System View Description)

La première étape consiste à charger le fichier SVD correspondant.

16

Ensuite, nous procédons à modifier l’adresse de base comme suit :

17

18

2.3 Chargement de la SRAM

Une étape importante consiste à charger le dump de la RAM dans le logiciel. Pour ce faire, nous
avons importer le fichier .bin de la RAM :

19

2.4 Analyse

Après avoir effectué toutes ces actions, nous avons lancé notre analyse.

20

21

3. Étude de l’authentification
3.1 Introduction

Il existe deux principales méthodes pour effectuer une analyse : la méthode « Haut en bas », qui
consiste à démarrer l'analyse à partir du point d'entrée, et la méthode « Bas en haut », où nous
partons des éléments qui attirent notre attention, tels que des chaînes de caractères ou des
importations. Ainsi, nous commençons par rechercher la fonction qui utilise la chaîne de caractères
Enter_password: afin de mieux comprendre le fonctionnement du mécanisme d’authentification.

​

De cette façon, nous trouvons la fonction FUN_08000aa8 et nous commençons à l'analyser.

22

À partir de cette section, nous concluons que la fonction FUN_0800066c est une fonction
d'affichage. En programmation des systèmes embarqués, il est courant d'éviter d'utiliser printf, nous
avons donc appeler cette fonction simplement print. Nous concluons également que
DAT_08000b28 est un pointeur vers une zone mémoire qui stocke le nombre de tentatives de
connexion incorrectes effectuées jusqu'à présent.

​

Étant donné que la variable bVar1 stocke la valeur vers laquelle DAT_08000b28 pointe, nous
décidons d’appeler cette variable attempts_cpt.

23

Les fonctions FUN_080001d0 et FUN_08000830 semblent être des fonctions de comparaison
de chaînes de caractères, renvoyant zéro si les deux chaînes sont identiques. Alors que la fonction
FUN_080001d0 ressemble à une fonction strcmp classique, la deuxième fonction ressemble à
une fonction de comparaison plus personnalisée qui diffère des implémentations classiques. Dans
les deux cas, la chaîne comparée est celle stockée dans auStack_48, ce qui permet de conclure
que ce tampon contient l'entrée de l'utilisateur.

Le tampon auStack_48 est rempli à l'aide de la fonction FUN_080007c4 qui charge un contenu
depuis la SRAM dans ce tampon (l’analyse de cette fonction fait l’objet de la section suivante.). Il
s'agit du mot de passe que l'utilisateur doit saisir, et il est donc clair que la fonction
FUN_08000830 compare le mot de passe saisi par l'utilisateur avec le vrai mot de passe.

Étant donné ces éléments, nous obtenons le code suivant.

24

3.2 Stockage du mot de passe

Comme déjà indiqué dans la section précédente, le rôle de la fonction FUN_080007c4 est de
charger le vrai mot de passe dans un tampon. Nous découvrons ainsi que ce mot de passe est basé
sur une liste de caractères stockés dans la SRAM. Afin d'obtenir le mot de passe, une opération XOR
est effectuée entre la valeur hexadécimale de chacun de ces caractères et la valeur 0x5a. De cette
manière, le mot de passe est reconstitué et utilisé pour la comparaison avec celui saisi par
l'utilisateur. De plus, nous pouvons voir que, sous certaines conditions, ce mot de passe est affiché à
l'utilisateur.

…

buffer = [0x36, 0x3f, 0x2e, 0x37, 0x3f, 0x33, 0x34]​
password = ''​

25

for i in range(0, 7):​
​ password += chr(buffer[i] ^ 0x5a)

print(password)

​

Mais que représente DAT_08000804 ?

Il s'agit d'un pointeur vers une zone mémoire située dans la SRAM, référencée par plusieurs autres
fonctions.

Par exemple, dans la fonction FUN_08000680, le pointeur vers cette zone de mémoire s'appelle
DAT_08000710, et dans le cas où la valeur stockée sur la SRAM est nulle, un message s'affiche à
l'utilisateur (avec la fonction d'affichage FUN_0800066c) :

Nous commençons par regarder quel message est affiché à l’utilisateur.

26

Et nous en concluons que le but de la condition est de vérifier si le mode DEBUG est déjà activé.
Nous obtenons alors :

Et pour la fonction FUN_080007c4, nous concluons que si le mode DEBUG est activé, le vrai
mot de passe est affiché à l'utilisateur après avoir été chargé dans la mémoire tampon.​

3.3 Activation du mode debug

L'examen de la fonction FUN_08000aa8 nous apprend également comment activer le mode
DEBUG : pour cela, l'utilisateur doit effectuer au moins une tentative de connexion incorrecte, puis
saisir DEBUG123 comme mot de passe. Reste maintenant à comprendre la signification de
DAT_08000b20 et DAT_08000b38.

27

Pour DAT_08000b20 ,

Nous en concluons que DAT_08000b70 de la fonction FUN_08000b44 pointe également vers
la même zone mémoire. Si la valeur stockée dans cette zone mémoire est égale à zéro, la fonction
FUN_08000aa8 est appelée, sinon la fonction FUN_08000a78 est appelée.

FUN_08000aa8 est la fonction par laquelle nous avons démarré l'analyse et elle gère tout ce qui
concerne l'authentification. La fonction FUN_08000a78 s'occupe de la gestion du mode TLV :

28

Le but de la condition ci-dessous est donc de vérifier si le mode TLV est activé :

​

Pour DAT_08000b38 ,

Nous avons déjà identifié qu'il s'agit de la zone mémoire qui indique si le mode DEBUG est activé.

Sur la base de ces données, nous pouvons désormais mieux comprendre le code.

29

3.4 Fonction de validation du mot de passe

La fonction de comparaison vérifie, caractère par caractère, si le mot de passe saisi par l'utilisateur
correspond au mot de passe réel. La vérification s'arrête dès qu'un caractère non identique est
détecté ou lorsque la fin de l'une des chaînes est atteinte. Après chaque correspondance de
caractères, un appel à la fonction FUN_08002d44 est effectué.

30

La fonction FUN_08002d44 semble effectuer des itérations de boucles infinies :

Nous pourrions par exemple effectuer les mêmes opérations en utilisant le code Python suivant, car
la fonction FUN_08002d38 renvoie la valeur stockée dans la zone mémoire suivante :

31

De plus, DAT_08002d68 pointe vers cette zone de mémoire :

def FUN_08002d38():

 return 0xa38f0000

def FUN_08002d44(param_1):

 iVar1 = FUN_08002d38()

 if (param_1 != 0xffffffff):

 param_1 + param_1 + 0x01000000

 iVar2 = FUN_08002d38()

 while (iVar2 - iVar1) < param_1:

 print((iVar2 - iVar1), param_1)

 iVar2 = FUN_08002d38()

FUN_08002d44(0x32)

32

Cependant, il s’agit de zones de mémoire accessibles par d’autres fonctions. Une estimation
raisonnable est donc que les valeurs dans ces zones de mémoire changent en même temps, de sorte
que le nombre d'itérations de boucle sera fini. Cela implique qu'il y a un certain délai après la
vérification de chaque caractère du mot de passe, rendant cette fonction vulnérable aux attaques
temporelles (Timing attack).

33

4. Analyse des commandes TLV
4.1 Le schéma de codage TLV dans le code C

TLV (type-length-value ou tag-length-value) est un schéma de codage utilisé pour les
éléments d'information dans les protocoles de communication. Un flux de données codé en TLV
contient du code relatif au type d'enregistrement, à la longueur de la valeur de l'enregistrement et
enfin à la valeur elle-même.1 Nous avons vu précédemment que la fonction FUN_08000a78 est
responsable de la gestion du mode TLV.

DAT_08000aa4 pointe vers la même zone en mémoire que le pointeur dans la condition de la
fonction FUN_08000b44 :

1 https://en.wikipedia.org/wiki/Type%E2%80%93length%E2%80%93value

34

Nous en concluons qu'il s'agit de la même condition et que auStack_48 est le tampon pour le TLV
que l'utilisateur va saisir.

Alors qu'il semble que le rôle de la fonction FUN_08000a20 soit de recevoir les entrées de
l'utilisateur, le rôle de la fonction FUN_0800085c est de les interpréter. Pour comprendre la
signification du code, nous commençons par trouver les chaînes de caractères correspondantes.

35

param_1 est le tampon, param_2 est sa longueur et nous comprenons que bVar1 est la partie
Type du TLV tandis que uVar2 est la partie Length. FUN_0800066c est, comme nous l'avons
vu précédemment, la fonction d’affichage.

Cela nous permet de conclure que la partie Type du TLV est codée sur un octet, et
qu’immédiatement après se trouve la partie Length. Nous identifions également les valeurs
suivantes pour les types de commandes possibles : 3, 1, 2, 0x42, 0xcc, 0xff, et 0xbb.

4.2 Gestion des allocations mémoire

■​ Type 3 : Libération de l'allocation mémoire pointée par *DAT_08000958.

36

La fonction FUN_080043a4 est donc très probablement la fonction free. ​

■​ Type 1 : Demande d'allocation mémoire de taille tlv_length.

La fonction FUN_08004394 est donc très probablement la fonction malloc.

37

■​ Type 2 : D'après la condition qui apparaît, nous comprenons que pour utiliser cette
commande, une zone mémoire doit d'abord être allouée à l'aide de la commande 1.

Mais, pour mieux comprendre cette partie, il faut d'abord s'intéresser à la fonction
FUN_080043b4.

En donnant de nouveaux noms aux paramètres, tout devient plus clair :

38

Nous en concluons que puVar2 est un pointeur vers la fin du tampon, puVar3 pointe vers
l'emplacement suivant dans le tampon alloué à l'aide de malloc, et que puVar1 pointe vers le
caractère suivant dans le tampon buffer. Ce qui nous donne :

39

Nous comprenons de cela que le but de la fonction FUN_080043b4 est de copier la partie Value

de la commande TLV dans un tampon alloué par malloc, et puisque la copie commence à partir de
tlv_buffer + 3, nous comprenons que la partie Length de la commande TLV est codée sur deux
octets.

4.3 Faire crasher le système et dump des registres

■​ Type 0xcc : Faire crasher le système

La première étape consiste à examiner le contenu de la fonction FUN_0800078c :

40

Avec les chaînes de caractères :

DAT_080007b4 pointe vers la même zone mémoire que celle que avons déjà identifiée comme la
zone où est stockée la valeur indiquant si le mode DEBUG est activé ou non. Cette commande
permet donc de provoquer un crash dans le système, mais elle n'est disponible qu'en mode DEBUG.

■​ Type 0xbb : dump des registres

41

La première étape consiste à examiner le contenu de la fonction FUN_08000734 :

Avec les chaînes de caractères :

DAT_0800077c pointe vers la même zone mémoire que celle que avons déjà identifiée comme la
zone où est stockée la valeur indiquant si le mode DEBUG est activé ou non. Cette commande
permet donc de dump des registres mais elle n'est disponible qu'en mode DEBUG.

42

4.4 Types de commandes supplémentaires

■​ Type 0xff : Sortir du mode TLV

DAT_0800094c pointe vers la même zone mémoire que celle que nous avons déjà
identifiée comme la zone où est stockée la valeur indiquant si le mode TLV est activé ou non.

■​ Type 0x42 : Dump du flag et sortir du mode TLV

La première étape consiste à examiner le contenu de la fonction FUN_08000810 : cette
fonction charge du contenu depuis la SRAM dans le tampon auStack_70.

43

Comme cela sera expliqué dans les chapitres suivants du rapport, ce sont des éléments qui
permettront de retrouver le Flag. Enfin, nous remarquons que cette commande, comme la
commande 0xff, désactive le mode TLV, ce qui est étrange, car cela contredit les messages
affichés à l’utilisateur.

44

4.5 Récapitulatif

45

Nom du
champ

Taille du champ

Type 1 Octet

Length 2 Octets

46

Value Selon la partie Length

Type de
commande

Description

1 Demande d'allocation mémoire

2 Copier la partie Value de la commande TLV dans le tampon alloué

3 Libération de l'allocation mémoire

0xcc Faire crasher le système (disponible qu'en mode DEBUG)

0xbb Dump des registres (disponible qu'en mode DEBUG)

0x42 Dump du flag et sortir du mode TLV

0xff Sortir du mode TLV

47

5. Vulnérabilités
5.1 Heap Overflow​
CWE-122: Heap-based Buffer Overflow

Un Heap overflow se produit lorsqu'un programme écrit plus de données dans un bloc de mémoire
alloué dynamiquement (sur le tas) que sa taille allouée. Un débordement de tas peut entraîner la
corruption des structures de données de tas adjacentes et peut entraîner l'exécution de code
arbitraire au nom de l'attaquant.2

Dans notre cas, un dépassement de tas peut se produire, car la commande qui permet l'allocation
de mémoire de taille X (commande de type 1) est complètement séparée de la commande qui
permet la copie d'une valeur vers cet emplacement mémoire (commande numéro 2). Ainsi, après
avoir demandé une allocation de mémoire de taille X, rien n'empêche l'utilisateur de demander de
copier un contenu de taille X+ n dans cette zone mémoire, entraînant un dépassement.

2 https://www.packetlabs.net/posts/demystifying-overflow-attacks/

48

5.2 Use After Free​
CWE-416: Use After Free

Cette vulnérabilité se produit lorsque du code réutilise de la mémoire après sa libération. Par la
suite, la mémoire peut être à nouveau allouée et sauvegardée dans un autre pointeur, tandis que le
pointeur d'origine référence un emplacement situé quelque part dans la nouvelle allocation. Toute
opération utilisant le pointeur d'origine n'est plus valide, car la mémoire « appartient » au code qui
opère sur le nouveau pointeur. Cette vulnérabilité peut entraîner une valeur inattendue, un crash, ou
une exécution de code 3

Dans notre cas, lorsqu'un utilisateur demande de libérer une allocation mémoire (TLV de Type 3), le
pointeur *ptr_to_malloc_length n'est pas réinitialisé et continue de pointer vers la même zone
mémoire, donc rien n'empêche l'utilisateur d'utiliser un TLV de Type 2 et de demander de copier du
contenu vers la zone mémoire libérée.

3 https://cwe.mitre.org/data/definitions/416.html

49

​

5.3 Vulnérabilité aux attaques temporelles (Timing attack)​
CWE-208: Observable Timing Discrepancy

Cette vulnérabilité se produit lorsque deux opérations distinctes dans un code nécessitent des
durées différentes pour être exécutées, d'une manière qui est observable pour un acteur et révèle
des informations pertinentes pour la sécurité sur l'état du produit, par exemple si une opération
particulière a réussi ou non.4

Dans notre cas, la fonction qui compare le mot de passe saisi par l'utilisateur avec le vrai mot de
passe reviendra immédiatement à la fonction appelante après avoir rencontré un caractère invalide,
et au contraire, exécutera une boucle avec un nombre potentiellement important d'itérations après
chaque comparaison réussie. De cette façon, un attaquant peut essayer de saisir différentes entrées
et mesurer le temps jusqu'à ce qu'il reçoive un message d'erreur pour savoir si peut-être au moins
une partie du mot de passe qu'il a saisi est correct.

4 https://cwe.mitre.org/data/definitions/208.html

50

5.4 Divulgation de trop d'informations en mode DEBUG​
CWE-1295: Debug Messages Revealing Unnecessary Information​

CWE-215: Insertion of Sensitive Information Into Debugging Code

Dans notre cas, le mode DEBUG accorde à l'utilisateur des autorisations de grande portée (la
possibilité de visualiser le contenu des registres et même de provoquer un crash du système), son
activation est trop simple (en saisissant au moins un mot de passe incorrect puis en saisissant le
mot de passe DEBUG123). De plus, ce mode révèle complètement le vrai mot de passe à
l'utilisateur.

51

6. Interaction avec le Microcontrôleur
6.1 La commande Screen

En branchant le microcontrôleur au port usb de l’ordinateur nous le retrouvons sous le nom de
périphérique ttyACM0.

dmesg

Dans un premier temps nous avons interagi à l’aide de la commande screen en se connectant avec
le mot de passe DEBUG123 :

sudo screen /dev/ttyACM0 115200

6.2 Script Python

Avec screen nous ne pouvions pas communiquer en TLV. Nous avons donc fait un script python.
Dans un premier temps nous nous connectons automatiquement :

52

Puis faisons de multiples appels à la fonction send_tlv, qui envoi des paquets TLV et affiche les
réponses :​

​

​

Une fois les paquets TLV envoyés nous pouvons envoyés des strings écrites par l’utilisateur
directement dans le cmd :

53

​

Exemple d’utilisation :

Cependant nous n’avions pas trouvé la valeur à envoyer, nous avons donc fait des tests et
remarquons que les réponses retournées sont le ou les derniers caractères de la valeur.

6.3 Exploitation du mode DEBUG

Une fois que nous avons recueilli toutes les informations sur le mode DEBUG, nous pouvons accéder
au mode TLV en suivant ces étapes :

54

●​ Saisir un mot de passe incorrect.
●​ Entrer le mot de passe DEBUG123 pour activer le mode DEBUG.
●​ Saisir à nouveau un mot de passe incorrect.

Le vrai mot de passe est alors affiché à l'utilisateur, car en mode DEBUG, le mot de passe est révélé
lorsqu'il est chargé dans le tampon.

6.4 Flag

Flag dans le mauvais format

55

En exécutant plusieurs fois le script d'affilée nous avons réussi à obtenir le flag mal formé (un xor
était effectué avec la valeur 0x42 au lieu de 0x5A). Nous avions eu aussi cette même string en
utilisant la commande screen.

Cela nous donne : [L^cP}yhWn}j~twoe.

Ce script permet la connexion automatique (avec le mot de passe letmein) et essaye de
communiquer en TLV en utilisant le type 0x42 afin d’envoyer des commandes.

Flag dans le bon format

L’unique moment où nous avons utilisé le fichier ELF fourni a été pour trouver le flag. En allant dans
la fonction DecryptFlag nous remarquons que la valeur dans la ram à l’adresse 0x20000000 et la
valeur 0x42 sont utilisées pour faire un xor et que le résultat est le flag déchiffré.

56

En allant à l’adresse 0x20000000, grâce au dump de la ram effectué plus tôt nous trouvons cette
string.

Cependant en effectuant un xor en utilisant 0x42 avec chaque caractère cela nous donne :

[L^cP}yhWn}j~twoe

Nous avons donc décidé de brute force la valeur avec laquelle il faut exécuter le xor :

57

Cela nous donne :

Nous remarquons une string intéressante : CTF{HeapOverflow}

C’est bien le flag !

6.5 Exploitation d’une vulnérabilité

Nous avons tenté d’exploiter la vulnérabilité de heap overflow à l’aide du script python. En reprenant
les fonctions vues ci-dessus, nous nous sommes connectés puis nous avons envoyé un premier
paquet TLV afin d’allouer une taille de buffer de 32 bits. Ensuite, nous avons envoyé un deuxième
paquet afin de remplir le buffer avec un payload de 128 bits, dépassant ainsi la taille du buffer.
Cependant nous n’avons pas eu le temps de tester ce code.

58

Bibliographie
GLiNet :

●​ https://gzhls.at/blob/ldb/3/5/7/2/574814232500cbfeedc718795d96c2783748.pdf
●​ https://images-na.ssl-images-amazon.com/images/I/B1oCL2RA8YS.pdf
●​ https://www.gl-inet.com/products/gl-mt300n-v2/

Datasheet MT7628:
●​ https://www.alldatasheet.com/datasheet-pdf/view/1131988/ETC2/MT7628.html?ref=bosch

ko.ca
Datasheet Winbond :

●​ https://www.lcsc.com/datasheet/lcsc_datasheet_2412251211_Winbond-Elec-W25Q128JVSI
Q_C97521.pdf

Micron D9RZH :
●​ https://www.worldwayelec.com/pro/micron/d9rzh/3866633
●​ https://www.micron.com/products/memory/dram-components/ddr2-sdram/part-catalog

Programming manual PM0214 :
●​ https://www.st.com/resource/en/programming_manual/pm0214-stm32-cortexm4-mcus-an

d-mpus-programming-manual-stmicroelectronics.pdf
Datasheet STM32F40XXX :

●​ https://www.st.com/resource/en/datasheet/dm00037051.pdf
STM32F405.svd :

●​ https://github.com/modm-io/cmsis-svd-stm32/blob/main/stm32f4/STM32F405.svd

59

https://gzhls.at/blob/ldb/3/5/7/2/574814232500cbfeedc718795d96c2783748.pdf
https://gzhls.at/blob/ldb/3/5/7/2/574814232500cbfeedc718795d96c2783748.pdf
https://images-na.ssl-images-amazon.com/images/I/B1oCL2RA8YS.pdf
https://www.gl-inet.com/products/gl-mt300n-v2/
https://www.alldatasheet.com/datasheet-pdf/view/1131988/ETC2/MT7628.html?ref=boschko.ca
https://www.alldatasheet.com/datasheet-pdf/view/1131988/ETC2/MT7628.html?ref=boschko.ca
https://www.lcsc.com/datasheet/lcsc_datasheet_2412251211_Winbond-Elec-W25Q128JVSIQ_C97521.pdf
https://www.lcsc.com/datasheet/lcsc_datasheet_2412251211_Winbond-Elec-W25Q128JVSIQ_C97521.pdf
https://www.worldwayelec.com/pro/micron/d9rzh/3866633
https://www.worldwayelec.com/pro/micron/d9rzh/3866633
https://www.micron.com/products/memory/dram-components/ddr2-sdram/part-catalog
https://www.st.com/resource/en/programming_manual/pm0214-stm32-cortexm4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/pm0214-stm32-cortexm4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://github.com/modm-io/cmsis-svd-stm32/blob/main/stm32f4/STM32F405.svd
https://github.com/modm-io/cmsis-svd-stm32/blob/main/stm32f4/STM32F405.svd

Annexe
Code 1

Version 1 du code pour exploiter le heap overflow, avec des sleep :

import serial

import time

PORT = '/dev/ttyACM0'

BAUD = 115200

TIMEOUT = 1

def send_tlv(ser, tag, value=b''):

 length = len(value)

 length_bytes = length.to_bytes(2, byteorder='little')

 packet = bytes([tag]) + length_bytes + value

 print(f"=> Sent TLV: tag=0x{tag:02X}, len={length}")

 ser.write(packet)

 time.sleep(1)

 resp = ser.read_all()

 if resp:

60

 try:

 print("<= Response:")

 print(resp.decode(errors='ignore'))

 except:

 print("<= [Binary Data]")

 print(resp)

 else:

 print("<= No response")

def main():

 with serial.Serial(PORT, BAUD, timeout=TIMEOUT) as ser:

 # Let the device initialize

 time.sleep(3)

 # Authenticate with password

 print("[*] Sending password...")

 ser.write(b'letmein\n')

 time.sleep(2)

 response = ser.read_all()

 print("[*] Response:")

 print(response.decode(errors='ignore'))

 # Send password twice

 print("[*] Sending password...")

61

 ser.write(b'letmein\n')

 time.sleep(2)

 response = ser.read_all()

 print("[*] Response:")

 print(response.decode(errors='ignore'))

 # STEP 1: Allocate a small buffer (Type 1, Length 32)

 print("[*] Allocating 32-byte heap buffer...")

 send_tlv(ser, 0x01, b'\x00' * 32)

 # STEP 2: Trigger overflow with 128-byte payload (Type 2, Length 128)

 print("[*] Sending overflow payload (128 bytes)...")

 overflow_payload = b'A' * 128

 send_tlv(ser, 0x02, overflow_payload)

if __name__ == '__main__':

 main()

62

Code 2

Version 2 : nous avons modifié le code afin de ne plus utiliser sleep mais des expect. Voici le code
final pour exploiter le heap overflow :

import pexpect

from pexpect_serial import SerialSpawn

PORT = '/dev/ttyACM0'

BAUD = 115200

def send_tlv(ser, tag, value=b'', expect=None):

 length = len(value)

 length_bytes = length.to_bytes(2, byteorder='little')

 packet = bytes([tag]) + length_bytes + value

 ser.write(packet)

 print(f"=> Sent TLV: tag=0x{tag:02X}, len={len(value)}")

 if expect:

 try:

 ser.expect(expect, timeout=3)

 print("<= Expected response:")

 print(ser.before.decode(errors='ignore') + ser.after.decode(errors='ignore'))

 except pexpect.TIMEOUT:

 print(f"<= Timeout waiting for: {expect}")

63

 except Exception as e:

 print("<= Error:", e)

 else:

 try:

 response = ser.read_nonblocking(size=1024, timeout=1)

 print(response.decode(errors='ignore'))

 except:

 print("[No immediate response]")

def login(ser):

 for attempt in [1, 2]:

 print(f"[*] Login attempt {attempt} with 'letmein'")

 ser.expect("Enter password:", timeout=3)

 ser.sendline("letmein")

 ser.expect("Access granted!", timeout=3)

 print("[+] Authenticated.")

def main():

 ser = SerialSpawn(PORT, baudrate=BAUD, timeout=1)

 # Perform login twice

 login(ser)

 # Step 1: Allocate 32-byte buffer

64

 print("[*] Allocating heap...")

 send_tlv(ser, 0x01, b'\x00' * 32, expect="Memory allocated")

 # Step 2: Overflow with 128 bytes

 print("[*] Sending overflow payload...")

 overflow_payload = b'A' * 128

 send_tlv(ser, 0x02, overflow_payload, expect="Heap overflow triggered")

if __name__ == '__main__':

 main()

65

	Sommaire
	Analyse matérielle
	1. Analyse matérielle du routeur GL.iNet 300M
	1.1 Analyse matérielle avec photos
	1.2 Composants identifiés
	1.3 Architecture du routeur
	1.4 Stockage du code
	1.5 Extraction et modification du firmware

	
	
	Analyse, recherche de bugs et exploitation
	1. Analyse du PCB et extraction du firmware
	1.1 Analyse du PCB
	1.2 Localisation des éléments critiques
	1.3 Connexion JTAG et dump du firmware
	1.4 Dump de la ram​
	1.5 Analyse du SVD (System View Description)

	2. Configuration de Ghidra
	2.1 Chargement dans Ghidra
	2.2 Chargement du SVD (System View Description)

	3. Étude de l’authentification
	3.4 Fonction de validation du mot de passe

	4. Analyse des commandes TLV
	4.1 Le schéma de codage TLV dans le code C
	4.2 Gestion des allocations mémoire
	4.3 Faire crasher le système et dump des registres
	4.4 Types de commandes supplémentaires
	4.5 Récapitulatif

	5. Vulnérabilités
	5.1 Heap Overflow​CWE-122: Heap-based Buffer Overflow
	​5.3 Vulnérabilité aux attaques temporelles (Timing attack)​CWE-208: Observable Timing Discrepancy

	6. Interaction avec le Microcontrôleur
	6.3 Exploitation du mode DEBUG

	Bibliographie
	Annexe
	Code 1
	Code 2

